scholarly journals DNA Polymerase II (polB) Is Involved in a New DNA Repair Pathway for DNA Interstrand Cross-Links inEscherichia coli

1999 ◽  
Vol 181 (9) ◽  
pp. 2878-2882 ◽  
Author(s):  
Mark Berardini ◽  
Patricia L. Foster ◽  
Edward L. Loechler

ABSTRACT DNA-DNA interstrand cross-links are the cytotoxic lesions for many chemotherapeutic agents. A plasmid with a single nitrogen mustard (HN2) interstrand cross-link (inter-HN2-pTZSV28) was constructed and transformed into Escherichia coli, and its replication efficiency (RE = [number of transformants from inter-HN2-pTZSV28]/[number of transformants from control]) was determined to be ∼0.6. Previous work showed that RE was high because the cross-link was repaired by a pathway involving nucleotide excision repair (NER) but not recombination. (In fact, recombination was precluded because the cells do not receive lesion-free homologous DNA.) Herein, DNA polymerase II is shown to be in this new pathway, since the replication efficiency (RE) is higher in apolB + (∼0.6) than in a ΔpolB(∼0.1) strain. Complementation with apolB +-containing plasmid restores RE to wild-type levels, which corroborates this conclusion. In separate experiments, E. coli was treated with HN2, and the relative sensitivity to killing was found to be as follows: wild type <polB < recA < polB recA ∼ uvrA. Because cells deficient in either recombination (recA) or DNA polymerase II (polB) are hypersensitive to nitrogen mustard killing,E. coli appears to have two pathways for cross-link repair: an NER/recombination pathway (which is possible when the cross-links are formed in cells where recombination can occur because there are multiple copies of the genome) and an NER/DNA polymerase II pathway. Furthermore, these results show that some cross-links are uniquely repaired by each pathway. This represents one of the first clearly defined pathway in which DNA polymerase II plays a role in E. coli. It remains to be determined why this new pathway prefers DNA polymerase II and why there are two pathways to repair cross-links.

2004 ◽  
Vol 24 (13) ◽  
pp. 5776-5787 ◽  
Author(s):  
Laura J. Niedernhofer ◽  
Hanny Odijk ◽  
Magda Budzowska ◽  
Ellen van Drunen ◽  
Alex Maas ◽  
...  

ABSTRACT Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (γ-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced γ-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, γ-H2AX foci were also induced in Ercc1 −/− cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1 −/− cells, MMC-induced γ-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1 −/− and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.


1997 ◽  
Vol 17 (12) ◽  
pp. 6822-6830 ◽  
Author(s):  
T Bessho ◽  
D Mu ◽  
A Sancar

Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3196-3196
Author(s):  
Pan Zhang ◽  
Deepa Sridharan ◽  
Michael Acosta ◽  
Muriel Lambert

Abstract Abstract 3196 Poster Board III-133 The hereditary bone marrow failure disorder, Fanconi anemia (FA), is characterized by a markedly increased incidence of acute myelogenous leukemia, diverse congenital abnormalities and a defect in ability to repair DNA interstrand cross-links. We have previously shown that in FA cells there is a deficiency in the structural protein nonerythroid a spectrin (aSpII), which is involved in repair of DNA interstrand cross-links and binds to cross-linked DNA. aSpII co-localizes in nuclear foci with FANCA and the cross-link repair protein, XPF, after normal human cells are damaged with a DNA interstrand cross-linking agent. One of the FA proteins which is thought to play an important role in the repair of DNA interstrand cross-links is FANCD2, which is known to form nuclear foci after cross-link damage. The present study was undertaken in order to get a better understanding of the relationship between aSpII and FANCD2, whether they interact with each other during the DNA repair process and co-localize in damage-induced nuclear foci. Immunofluorescence microscopy was carried out to determine whether these proteins co-localized in nuclear foci after cells were damaged with a DNA interstrand cross-linking agent, 8-methylpsoralen plus UVA light (8-MOP) or mitomycin C (MMC). Time course measurements showed that FANCD2 foci were first visible at 2 hours after damage and increased up to 16 hours and were still present at 72 hours after damage. This time course of foci formation correlated with levels of monoubiquitination of FANCD2. Measurement of gH2AX foci formation showed that the time course of foci formation was similar to that of FANCD2 measured up to 72 hours post damage. In contrast, aSpII foci were first visible between 8-10 hours after damage. The number of these foci peaked at 16 hours and by 24 hours foci were no longer observed. Co-localization studies showed that there was little co-localization of the FANCD2 and aSpII foci over this time course. This indicates that these two proteins may be involved in different steps in the DNA interstrand cross-link repair process. Based on models that have been proposed for the role of FANCD2 in the repair of DNA interstrand cross-links, we propose that, after DNA damage, FANCD2 localizes at DNA replication forks stalled at sites of interstrand cross-links and aids in the assembly of proteins at this site. This is followed by localization of aSpII and XPF and other proteins involved in the initial incision steps in DNA interstrand cross-link repair where they play a role in the unhooking of the cross-link. FANCD2 is then involved in subsequent steps in the repair process, which involve homologous recombination. Thus two proteins, FANCD2 and aSpII, both of which have been shown to be critical for the DNA interstrand cross-link repair process may be involved in different or distinct steps in this repair process. Deficiencies in these proteins would impact on DNA interstrand cross-link repair and, as we have shown for aIISp, would have an adverse effect on the genomic stability of FA cells. . Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 283 (3) ◽  
pp. 1275-1281 ◽  
Author(s):  
Laura A. Fisher ◽  
Mika Bessho ◽  
Tadayoshi Bessho

The processing of stalled forks caused by DNA interstrand cross-links (ICLs) has been proposed to be an important step in initiating mammalian ICL repair. To investigate a role of the XPF-ERCC1 complex in this process, we designed a model substrate DNA with a single psoralen ICL at a three-way junction (Y-shaped DNA), which mimics a stalled fork structure. We found that the XPF-ERCC1 complex makes an incision 5′ to a psoralen lesion on Y-shaped DNA in a damage-dependent manner. Furthermore, the XPF-ERCC1 complex generates an ICL-specific incision on the 3′-side of an ICL. The ICL-specific 3′-incision, along with the 5′-incision, on the cross-linked Y-shaped DNA resulted in the separation of the two cross-linked strands (the unhooking of the ICL) and the induction of a double strand break near the cross-linked site. These results implicate the XPF-ERCC1 complex in initiating ICL repair by unhooking the ICL, which simultaneously induces a double strand break at a stalled fork.


2000 ◽  
Vol 20 (7) ◽  
pp. 2446-2454 ◽  
Author(s):  
David Mu ◽  
Tadayoshi Bessho ◽  
Lubomir V. Nechev ◽  
David J. Chen ◽  
Thomas M. Harris ◽  
...  

ABSTRACT DNA interstrand cross-links are induced by many carcinogens and anticancer drugs. It was previously shown that mammalian DNA excision repair nuclease makes dual incisions 5′ to the cross-linked base of a psoralen cross-link, generating a gap of 22 to 28 nucleotides adjacent to the cross-link. We wished to find the fates of the gap and the cross-link in this complex structure under conditions conducive to repair synthesis, using cell extracts from wild-type and cross-linker-sensitive mutant cell lines. We found that the extracts from both types of strains filled in the gap but were severely defective in ligating the resulting nick and incapable of removing the cross-link. The net result was a futile damage-induced DNA synthesis which converted a gap into a nick without removing the damage. In addition, in this study, we showed that the structure-specific endonuclease, the XPF-ERCC1 heterodimer, acted as a 3′-to-5′ exonuclease on cross-linked DNA in the presence of RPA. Collectively, these observations shed some light on the cellular processing of DNA cross-links and reveal that cross-links induce a futile DNA synthesis cycle that may constitute a signal for specific cellular responses to cross-linked DNA.


2017 ◽  
Author(s):  
◽  
Jacqueline Gamboa Varela

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] DNA is the central molecule of biology as it stores the genetic information for cells to properly function and develop. Modifications to the DNA can stall cellular processes such as replication and transcription, leading the cell to recruit repair machinery or in some cases undergo apoptosis. Interstrand cross-links are particularly significant types of DNA damage because they prevent strand separation required for replication and transcription. Cross-links involve bonding between the two strands of DNA. The rate and mechanism of cross-link repair in cells are not well understood. A significant challenge in the study of cross-link repair is the synthesis of chemically well-defined DNA cross-links. Here we summarize the preparation of cross-links derived from the hydrazone formation between a non-natural nucleobase N4-aminocytidine and abasic sites in duplex DNA. The cross-link was generated rapidly and in high yield. The cross-link is stable under physiological conditions but, interestingly, can be reversibly dissociated and re-formed by thermal cycling between 20-80 [degrees]C. We provided evidence that the cross-link is stable against multiple agents and the cross-link is reversible. We used this chemistry to prepare structurally diverse cross-links for the utilization in cross-link repair studies. Overall, we developed a synthetic cross-link that is easily and rapidly prepared from commercially available reagents in high yields, at defined locations in duplexed DNA.


1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


2016 ◽  
Vol 89 (4) ◽  
pp. 671-688 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The theoretical model developed by Charlesby to quantify the balance between cross-links creation of polymers and chain scission during radiation cross-linking and further modifications by Horikx to describe network breakdown from aging were merged to characterize the balance of both types of scission on the development of the sol content during de-vulcanization of rubber networks. There are, however, disturbing factors in these theoretical considerations vis-à-vis practical reality. Sulfur- and peroxide-cured NR and EPDM vulcanizates were de-vulcanized under conditions of selective cross-link and random main-chain scissions. Cross-link scission was obtained using thiol-amine reagents for selective cleavage of sulfur cross-links. Random main-chain scission was achieved by heating peroxide vulcanizates of NR with diphenyldisulfide, a method commonly employed for NR reclaiming. An important factor in the analyses of these experiments is the cross-linking index. Its value must be calculated using the sol fraction of the cross-linked network before de-vulcanization to obtain reliable results. The values for the cross-linking index calculated with sol-gel data before de-vulcanization appear to fit the experimentally determined modes of network scission during de-vulcanization very well. This study confirms that the treatment of de-vulcanization data with the merged Charlesby and Horikx models can be used satisfactorily to characterize the de-vulcanization of NR and EPDM vulcanizates.


2019 ◽  
Vol 12 (1) ◽  
pp. 63-69
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Rastislav Dosoudil ◽  
Ivan Hudec

Abstract Two types of composites based on natural rubber (NR) and strontium ferrite were tested in this study. Composites of the first type were prepared by incorporation of strontium ferrite in the concentration range ranging from 0 to 100 phr (parts per hundred rubber) into pure NR based rubber matrix, while with those of the second type, strontium ferrite was dosed in the same concentration level into NR based rubber batch with constant amount of carbon black — 25 phr. For rubber matrices cross-linking, a standard sulfur based curing system was used. This work is focused on the effect of magnetic filler content on physico-mechanical, magnetic and thermo-physical properties of composite materials. Subsequently, the cross-link density and the structure of the formed sulfidic cross-links were examined. The results showed that the cross-link density of both types of composites increased with the increasing content of magnetic filler, while the structure of the sulfidic cross-links was almost not influenced by the amount of strontium ferrite. Tensile strength of rubber composites with pure rubber matrix was slightly improved by the incorporation of ferrite, while in case of composites based on a carbon black batch, the incorporation of magnetic filler resulted in the decrease of this characteristic. The presence of magnetic filler in both types of composites leads to a significant increase of the remanent magnetic induction.


2018 ◽  
Author(s):  
◽  
Maryam Imani Nejad

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Abasic (Ap) sites are a common form of DNA lesion that occur endogenously 50,000-200,000 per cell per day in mammals. The alkylation of the guanine and adenine residues by the alkylating agents such as nitrogen mustards also induces the formation of Ap sites in genomic DNA. Our group recently showed that Ap sites can forge DNA-DNA interstrand cross-links in some sequences via reaction of the Ap aldehyde residue with the exocyclic amino groups of nucleobases, such as adenine and guanine, on the opposing strand of the DNA duplex. The earlier work in the group revealed that formation of these covalent bridges between two DNA strands is highly sequence- dependent. Although interstrand cross-links are one of the most deleterious types of cellular DNA damage, the availability of synthetic DNA duplexes containing chemically well-defined, site-specific interstrand cross-links has been proven to be a valuable tool in biological chemistry and medicine. We prepared and characterized a new Ap-derived interstrand cross-link. In another project, we use these remarkable cross-linking reactions for the covalent capture of disease-relevant single nucleotide polymorphism by using a protein nanopore technology. The complex mechanisms underlying cross-link repair in cells and limited availability of stable and defined cross-link are two major reasons why repair pathways of these lesions are not yet well understood. By preparing a variety of Ap-derived cross-links, we studied the role of a base excision repair DNA glycosylase, NEIL3 in unhooking the lesions.


Sign in / Sign up

Export Citation Format

Share Document