scholarly journals Regions of RNase E Important for 5′-End-Dependent RNA Cleavage and Autoregulated Synthesis

2000 ◽  
Vol 182 (9) ◽  
pp. 2468-2475 ◽  
Author(s):  
Xunqing Jiang ◽  
Alexis Diwa ◽  
Joel G. Belasco

ABSTRACT RNase E is an important regulatory enzyme that plays a key role in RNA processing and degradation in Escherichia coli. Internal cleavage by this endonuclease is accelerated by the presence of a monophosphate at the RNA 5′ end. Here we show that the preference of E. coli RNase E for 5′-monophosphorylated substrates is an intrinsic property of the catalytically active amino-terminal half of the enzyme and does not require the carboxy-terminal region. This property is shared by the related E. coli ribonuclease CafA (RNase G) and by a cyanobacterial RNase E homolog derived fromSynechocystis, indicating that the 5′-end dependence of RNase E is a general characteristic of members of this ribonuclease family, including those from evolutionarily distant species. Although it is dispensable for 5′-end-dependent RNA cleavage, the carboxy-terminal half of RNase E significantly enhances the ability of this ribonuclease to autoregulate its synthesis in E. coli. Despite similarities in amino acid sequence and substrate specificity, CafA is unable to replace RNase E in sustaining E. colicell growth or in regulating RNase E production, even when overproduced sixfold relative to wild-type RNase E levels.

1971 ◽  
Vol 133 (6) ◽  
pp. 1309-1324 ◽  
Author(s):  
Herbert Lindsley ◽  
Mart Mannik ◽  
Paul Bornstein

Immunological studies of rat skin collagen were carried out with a sensitive and quantitative radioimmunoassay. Hyperimmune rabbit antisera to rat skin collagen and isolated α2 chains were used. Iodine-labeled α chains and CNBr-produced peptides served as test antigens, and native collagen, α chains, and CNBr peptides were employed as inhibitors in the assay. The α1 and α2 chains were immunologically distinct. Although the α1 chain was not immunogenic, antibodies to α1 were detected in antisera to the intact collagen molecule. The major antigenic determinant of the α1 chain was located in α1-CB6 which constitutes the carboxy-terminal region of the chain. The α2 chain contained two non-cross-reacting antigenic determinants, one in the amino-terminal region (α2-CB1) and the other in the carboxy-terminal region (α2-CB5) of the chain. The native collagen molecule was less effective than isolated α chains in inhibiting binding of labeled peptides to antisera, indicating that antigenic determinants were less accessible in the triple helical molecule. These immunologic studies are consistent with preliminary comparative biochemical data which indicate that interspecies structural differences in collagen predominate at both the amino- and carboxy-terminal ends of the chains.


2005 ◽  
Vol 12 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Kang-Seuk Choi ◽  
Jin-Ju Nah ◽  
Young-Joon Ko ◽  
Shien-Young Kang ◽  
Kyoung-Jin Yoon ◽  
...  

ABSTRACT Attempts were made to identify and map epitopes on the nucleocapsid (N) protein of peste des petits ruminants virus (PPRV) (Nigeria75/1 strain) using seven monoclonal antibodies (MAbs) and deletion mutants. At least four antigenic domains (A-I, A-II, C-I, and C-II) were identified using the MAbs. Domains A-I (MAb 33-4) and A-II (MAbs 38-4, P-3H12, and P-13A9) were determined to be located on the amino-terminal half (amino acids [aa] 1 to 262), and domains C-I (P-14C6) and C-II (P-9H10 and P-11A6) were within the carboxy-terminal region (aa 448 to 521). Nonreciprocal competition between A-II MAbs and MAbs to C-I and C-II domains was observed, indicating that they may be exposed on the surface of the N protein and spatially overlap each other. Blocking or competitive enzyme-linked immunosorbent assay studies using PPRV serum antibodies revealed that epitopes on the domains A-II and C-II were immunodominant, whereas those on the domains A-I and C-I were not. The competition between MAb and rinderpest virus (RPV) serum antibodies raised against RPV strain LATC was found in two epitopes (P-3H12 and P-13A9) on the domain A-II, indicating that these epitopes may cause cross-reactivity between PPRV and RPV. Identification of immunodominant but PPRV-specific epitopes and domains will provide the foundation in designing an N-protein-based diagnostic immunoassay for PPRV.


1999 ◽  
Vol 181 (12) ◽  
pp. 3842-3844 ◽  
Author(s):  
Lizabeth D. Murphy ◽  
Judah L. Rosner ◽  
Steven B. Zimmerman ◽  
Dominic Esposito

ABSTRACT The Escherichia coli nucleoid contains DNA in a condensed but functional form. Analysis of proteins released from isolated spermidine nucleoids after treatment with DNase I reveals significant amounts of two proteins not previously detected in wild-type E. coli. Partial amino-terminal sequencing has identified them as the products of rdgC andyejK. These proteins are strongly conserved in gram-negative bacteria, suggesting that they have important cellular roles.


1991 ◽  
Vol 11 (10) ◽  
pp. 4809-4821
Author(s):  
D Poon ◽  
S Schroeder ◽  
C K Wang ◽  
T Yamamoto ◽  
M Horikoshi ◽  
...  

We have examined the structure-function relationships of TFIID through in vivo complementation tests. A yeast strain was constructed which lacked the chromosomal copy of SPT15, the gene encoding TFIID, and was therefore dependent on a functional plasmid-borne wild-type copy of this gene for viability. By using the plasmid shuffle technique, the plasmid-borne wild-type TFIID gene was replaced with a family of plasmids containing a series of systematically mutated TFIID genes. These various forms of TFIID were expressed from three different promoter contexts of different strengths, and the ability of each mutant form of TFIID to complement our chromosomal TFIID null allele was assessed. We found that the first 61 amino acid residues of TFIID are totally dispensable for vegetative cell growth, since yeast strains containing this deleted form of TFIID grow at wild-type rates. Amino-terminally deleted TFIID was further shown to be able to function normally in vivo by virtue of its ability both to promote accurate transcription initiation from a large number of different genes and to interact efficiently with the Gal4 protein to activate transcription of GAL1 with essentially wild-type kinetics. Any deletion removing sequences from within the conserved carboxy-terminal region of S. cerevisiae TFIID was lethal. Further, the exact sequence of the conserved carboxy-terminal portion of the molecule is critical for function, since of several heterologous TFIID homologs tested, only the highly related Schizosaccharomyces pombe gene could complement our S. cerevisiae TFIID null mutant. Taken together, these data indicate that all important functional domains of TFIID appear to lie in its carboxy-terminal 179 amino acid residues. The significance of these findings regarding TFIID function are discussed.


2001 ◽  
Vol 75 (23) ◽  
pp. 11851-11862 ◽  
Author(s):  
S. Michael Rothenberg ◽  
Mari N. Olsen ◽  
Louise Chang Laurent ◽  
Rachel Adams Crowley ◽  
Patrick O. Brown

ABSTRACT The envelope (Env) protein of Moloney murine leukemia virus is the primary mediator of viral entry. We constructed a large pool of insertion mutations in the env gene and analyzed the fitness of each mutant in completing two critical steps in the virus life cycle: (i) the expression and delivery of the Env protein to the cell surface during virion assembly and (ii) the infectivity of virions displaying the mutant proteins. The majority of the mutants were poorly expressed at the producer cell surface, suggesting folding defects due to the presence of the inserted residues. The mutants with residual infectivity had insertions either in the amino-terminal signal sequence region, two disulfide-bonded loops in the receptor binding domain, discrete regions of the carboxy-terminal region of the surface subunit (SU), or the cytoplasmic tail. Insertions that allowed the mutants to reach the cell surface but not to mediate detectable infection were located within the amino-terminal sequence of the mature Env, within the SU carboxy-terminal region, near putative receptor binding residues, and throughout the fusion peptide. Independent analysis of select mutants in this group allowed more precise identification of the defect in Env function. Mapping of mutant phenotypes to a structural model of the receptor-binding domain provides insights into the protein's functional organization. The high-resolution functional map reported here will be valuable for the engineering of the Env protein for a variety of uses, including gene therapy.


2000 ◽  
Vol 66 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Alexander D. Frey ◽  
James E. Bailey ◽  
Pauli T. Kallio

ABSTRACT Expression of the vhb gene encoding hemoglobin fromVitreoscilla sp. (VHb) in several organisms has been shown to improve microaerobic cell growth and enhance oxygen-dependent product formation. The amino-terminal hemoglobin domain of the flavohemoprotein (FHP) of the gram-negative hydrogen-oxidizing bacterium Alcaligenes eutrophus has 51% sequence homology with VHb. However, like other flavohemoglobins and unlike VHb, FHP possesses a second (carboxy-terminal) domain with NAD(P)H and flavin adenine dinucleotide (FAD) reductase activities. To examine whether the carboxy-terminal redox-active site of flavohemoproteins can be used to improve the positive effects of VHb in microaerobic Escherichia coli cells, we fused sequences encoding NAD(P)H, FAD, or NAD(P)H-FAD reductase activities of A. eutrophus in frame after the vhb gene. Similarly, the gene for FHP was modified, and expression cassettes encoding amino-terminal hemoglobin (FHPg), FHPg-FAD, FHPg-NAD, or FHP activities were constructed. Biochemically active heme proteins were produced from all of these constructions in Escherichia coli, as indicated by their ability to scavenge carbon monoxide. The presence of FHP or of VHb-FAD-NAD reductase increased the final cell density of transformed wild-type E. coli cells approximately 50 and 75%, respectively, for hypoxic fed-batch culture relative to the control synthesizing VHb. Approximately the same final optical densities were achieved with the E. coli strains expressing FHPg and VHb. The presence of VHb-FAD or FHPg-FAD increased the final cell density slightly relative to the VHb-expressing control under the same cultivation conditions. The expression of VHb-NAD or FHPg-NAD fusion proteins reduced the final cell densities approximately 20% relative to the VHb-expressing control. The VHb-FAD-NAD reductase-expressing strain was also able to synthesize 2.3-fold more recombinant β-lactamase relative to the VHb-expressing control.


1991 ◽  
Vol 11 (10) ◽  
pp. 4809-4821 ◽  
Author(s):  
D Poon ◽  
S Schroeder ◽  
C K Wang ◽  
T Yamamoto ◽  
M Horikoshi ◽  
...  

We have examined the structure-function relationships of TFIID through in vivo complementation tests. A yeast strain was constructed which lacked the chromosomal copy of SPT15, the gene encoding TFIID, and was therefore dependent on a functional plasmid-borne wild-type copy of this gene for viability. By using the plasmid shuffle technique, the plasmid-borne wild-type TFIID gene was replaced with a family of plasmids containing a series of systematically mutated TFIID genes. These various forms of TFIID were expressed from three different promoter contexts of different strengths, and the ability of each mutant form of TFIID to complement our chromosomal TFIID null allele was assessed. We found that the first 61 amino acid residues of TFIID are totally dispensable for vegetative cell growth, since yeast strains containing this deleted form of TFIID grow at wild-type rates. Amino-terminally deleted TFIID was further shown to be able to function normally in vivo by virtue of its ability both to promote accurate transcription initiation from a large number of different genes and to interact efficiently with the Gal4 protein to activate transcription of GAL1 with essentially wild-type kinetics. Any deletion removing sequences from within the conserved carboxy-terminal region of S. cerevisiae TFIID was lethal. Further, the exact sequence of the conserved carboxy-terminal portion of the molecule is critical for function, since of several heterologous TFIID homologs tested, only the highly related Schizosaccharomyces pombe gene could complement our S. cerevisiae TFIID null mutant. Taken together, these data indicate that all important functional domains of TFIID appear to lie in its carboxy-terminal 179 amino acid residues. The significance of these findings regarding TFIID function are discussed.


2001 ◽  
Vol 69 (9) ◽  
pp. 5597-5605 ◽  
Author(s):  
Marjan Ghaem-Maghami ◽  
Cameron P. Simmons ◽  
Sarah Daniell ◽  
Mariagrazia Pizza ◽  
David Lewis ◽  
...  

ABSTRACT The formation of attaching and effacing (A/E) lesions on gut enterocytes is central to the pathogenesis of enterohemorrhagic (EHEC)Escherichia coli, enteropathogenic E. coli (EPEC), and the rodent pathogen Citrobacter rodentium. Genes encoding A/E lesion formation map to a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Here we show that the LEE-encoded proteins EspA, EspB, Tir, and intimin are the targets of long-lived humoral immune responses in C. rodentium-infected mice. Mice infected with C. rodentium developed robust acquired immunity and were resistant to reinfection with wild-type C. rodentium or a C. rodentium derivative, DBS255(pCVD438), which expressed intimin derived from EPEC strain E2348/69. The receptor-binding domain of intimin polypeptides is located within the carboxy-terminal 280 amino acids (Int280). Mucosal and systemic vaccination regimens using enterotoxin-based adjuvants were employed to elicit immune responses to recombinant Int280α from EPEC strain E2348/69. Mice vaccinated subcutaneously with Int280α, in the absence of adjuvant, were significantly more resistant to oral challenge with DBS255(pCVD438) but not with wild-type C. rodentium. This type-specific immunity could not be overcome by employing an exposed, highly conserved domain of intimin (Int388–667) as a vaccine. These results show that anti-intimin immune responses can modulate the outcome of a C. rodentium infection and support the use of intimin as a component of a type-specific EPEC or EHEC vaccine.


1990 ◽  
Vol 111 (5) ◽  
pp. 1987-2003 ◽  
Author(s):  
P C Wong ◽  
D W Cleveland

We have generated a set of amino- and carboxy-terminal deletions of the neurofilament NF-M gene and determined the molecular consequences of forced expression of these mutant constructs in mouse fibroblasts. To follow the expression of mutant NF-M subunits in transfected cells, a 12 amino acid epitope (from the human c-myc protein) was expressed at the carboxy terminus of each mutant. We show that NF-M molecules missing up to 90 or 70% of the nonhelical carboxy-terminal tail or amino-terminal head domains, respectively, incorporate readily into an intermediate filament network comprised either of vimentin or NF-L, whereas deletions into either the amino- or carboxy-terminal alpha-helical rod region generate assembly-incompetent polypeptides. Carboxy-terminal deletions into the rod domain invariably yield dominant mutants which rapidly disrupt the array of filaments comprised of NF-L or vimentin. Accumulation of these mutant NF-M subunits disrupts vimentin filament arrays even when present at approximately 1% the level of the wild-type subunits. In contrast, the amino-terminal deletions into the rod produce pseudo-recessive mutants that perturb the wild-type NF-L or vimentin arrays only modestly. The inability of such amino-terminal mutants to disrupt wild-type subunits defines a region near the amino-terminal alpha-helical rod domain (residues 75-126) that is required for the earliest steps in filament assembly.


1980 ◽  
Vol 85 (1) ◽  
pp. 161-170 ◽  
Author(s):  
R. M. MANNING ◽  
G. N. HENDY ◽  
S. E. PAPAPOULOS ◽  
J. L. H. O'RIORDAN

SUMMARY Antisera to a trichloroacetic-acid precipitate of human parathyroid hormone (PTH) were produced in goats. Two of these antisera (G36 and G31) were of high affinity, and the bovine and porcine hormones were less reactive. Synthetic peptides containing the amino-terminal region of human PTH reacted with both antisera; the 1–34 peptide (PTH-(1–34)), with the sequence proposed by Niall, Sauer, Jacobs, Keutmann, Segre, O'Riordan, Aurbach & Potts in 1974, was more reactive than that having the sequence proposed by Brewer, Fairwell, Ronan, Sizemore & Arnaud in 1972. The antisera were further characterized with a number of other native and synthetic fragments of human PTH and reacted poorly with fragments from the carboxy-terminal region of the molecule. Since the amino-terminal fragments did not account for all the immunoreactivity, it is assumed that the antisera had some recognition sites for the central part of the molecule. Highly purified human PTH-(1–84) was labelled with 125I and radioimmunoassays were developed using this tracer and antiserum G36. To avoid the problems associated with labelling human PTH with 125I, a labelled antibody assay was developed with G36 and an immunoadsorbent consisting of human PTH-(1–34) (sequence of Niall et al.) coupled to cellulose. A sensitive homologous amino-terminal specific assay was developed in this way.


Sign in / Sign up

Export Citation Format

Share Document