scholarly journals Expression of Alcaligenes eutrophusFlavohemoprotein and Engineered VitreoscillaHemoglobin-Reductase Fusion Protein for Improved Hypoxic Growth ofEscherichia coli

2000 ◽  
Vol 66 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Alexander D. Frey ◽  
James E. Bailey ◽  
Pauli T. Kallio

ABSTRACT Expression of the vhb gene encoding hemoglobin fromVitreoscilla sp. (VHb) in several organisms has been shown to improve microaerobic cell growth and enhance oxygen-dependent product formation. The amino-terminal hemoglobin domain of the flavohemoprotein (FHP) of the gram-negative hydrogen-oxidizing bacterium Alcaligenes eutrophus has 51% sequence homology with VHb. However, like other flavohemoglobins and unlike VHb, FHP possesses a second (carboxy-terminal) domain with NAD(P)H and flavin adenine dinucleotide (FAD) reductase activities. To examine whether the carboxy-terminal redox-active site of flavohemoproteins can be used to improve the positive effects of VHb in microaerobic Escherichia coli cells, we fused sequences encoding NAD(P)H, FAD, or NAD(P)H-FAD reductase activities of A. eutrophus in frame after the vhb gene. Similarly, the gene for FHP was modified, and expression cassettes encoding amino-terminal hemoglobin (FHPg), FHPg-FAD, FHPg-NAD, or FHP activities were constructed. Biochemically active heme proteins were produced from all of these constructions in Escherichia coli, as indicated by their ability to scavenge carbon monoxide. The presence of FHP or of VHb-FAD-NAD reductase increased the final cell density of transformed wild-type E. coli cells approximately 50 and 75%, respectively, for hypoxic fed-batch culture relative to the control synthesizing VHb. Approximately the same final optical densities were achieved with the E. coli strains expressing FHPg and VHb. The presence of VHb-FAD or FHPg-FAD increased the final cell density slightly relative to the VHb-expressing control under the same cultivation conditions. The expression of VHb-NAD or FHPg-NAD fusion proteins reduced the final cell densities approximately 20% relative to the VHb-expressing control. The VHb-FAD-NAD reductase-expressing strain was also able to synthesize 2.3-fold more recombinant β-lactamase relative to the VHb-expressing control.

2019 ◽  
Vol 41 (2) ◽  
Author(s):  
Tran Thanh Thuy ◽  
Lai Thi Hong Nhung ◽  
Tran Dinh Man ◽  
Le Thi Thanh Xuan ◽  
Nguyen Kim Thoa

Expression of microbial target genes in Escherichia coli is broadly used due to its advantages namely: well established system, easy to manipulate, a huge biomass, high level productivity, safe and inexpensive to grow. Metagenomic technique has been applying in Vietnam recently for effective mining of uncultured gene resources, especially in endemic mini-ecologies such as hot springs where the cell densities are low. DNA metagenome of Binh Chau hot spring was isolated and sequenced by Illumia HiseqTM. Based on analyses of databases of cellulase-encoded genes, denovogenes 18736 gene sequence for thermal endoglucanase was selected for expression in E. coli. In this paper, some factors for expression of endoglucanase have been investigated. The results show that appropriate gene expression conditions are:  Expression performed in E. coli C43 (DE3) on TB medium at 30oC with 0.25 mM of IPTG as inducer, the culture volume of 20% compared with the bottle volume and the expression time is 42–48 hours. In this condition, the biomass production and soluble enzyme activity can reached up to 5.54–5.58 g /L and  1.92–1.98 U/mL, respectively. Our results show the prospect of exploiting microbial genes without culture.


2002 ◽  
Vol 184 (13) ◽  
pp. 3630-3639 ◽  
Author(s):  
David E. Nelson ◽  
Anindya S. Ghosh ◽  
Avery L. Paulson ◽  
Kevin D. Young

ABSTRACT Four low-molecular-weight penicillin binding proteins (LMW PBPs) of Escherichia coli are closely related and have similar dd-carboxypeptidase activities (PBPs 4, 5, and 6 and DacD). However, only one, PBP 5, has a demonstrated physiological function. In its absence, certain mutants of E. coli have altered diameters and lose their uniform outer contour, resulting in morphologically aberrant cells. To determine what differentiates the activities of these LMW PBPs, we constructed fusion proteins combining portions of PBP 5 with fragments of other dd-carboxypeptidases to see which hybrids restored normal morphology to a strain lacking PBP 5. Functional complementation occurred when truncated PBP 5 was combined with the terminal membrane anchor sequences of PBP 6 or DacD. However, complementation was not restored by the putative carboxy-terminal anchor of PBP 4 or by a transmembrane region of the osmosensor protein ProW, even though these hybrids were membrane bound. Site-directed mutagenesis of the carboxy terminus of PBP 5 indicated that complementation required a generalized amphipathic membrane anchor but that no specific residues in this region seemed to be required. A functional fusion protein was produced by combining the N-terminal enzymatic domain of PBP 5 with the C-terminal β-sheet domain of PBP 6. In contrast, the opposite hybrid of PBP 6 to PBP 5 was not functional. The results suggest that the mode of PBP 5 membrane anchoring is important, that the mechanism entails more than a simple mechanical tethering of the enzyme to the outer face of the inner membrane, and that the physiological differences among the LMW PBPs arise from structural differences in the dd-carboxypeptidase enzymatic core.


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1421-1431 ◽  
Author(s):  
Patrice Bruscella ◽  
Laure Cassagnaud ◽  
Jeanine Ratouchniak ◽  
Gaël Brasseur ◽  
Elisabeth Lojou ◽  
...  

The gene encoding a putative high-potential iron–sulfur protein (HiPIP) from the strictly acidophilic and chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 33020 has been cloned and sequenced. This potential HiPIP was overproduced in the periplasm of the neutrophile and heterotroph Escherichia coli. As shown by optical and EPR spectra and by electrochemical studies, the recombinant protein has all the biochemical properties of a HiPIP, indicating that the iron–sulfur cluster was correctly inserted. Translocation of this protein in the periplasm of E. coli was not detected in a ΔtatC mutant, indicating that it is dependent on the Tat system. The genetic organization of the iro locus in strains ATCC 23270 and ATCC 33020 is different from that found in strains Fe-1 and BRGM. Indeed, in A. ferrooxidans ATCC 33020 and ATCC 23270 (the type strain), iro was not located downstream from purA but was instead downstream from petC2, encoding cytochrome c 1 from the second A. ferrooxidans cytochrome bc 1 complex. These findings underline the genotypic heterogeneity within the A. ferrooxidans species. The results suggest that Iro transfers electrons from a cytochrome bc 1 complex to a terminal oxidase, as proposed for the HiPIP in photosynthetic bacteria.


2011 ◽  
Vol 77 (23) ◽  
pp. 8295-8302 ◽  
Author(s):  
Laura-Dorina Dinu ◽  
Susan Bach

ABSTRACTEscherichia coliO157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate ofE. coliO157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction ofE. coliO157:H7 Tn7gfptransformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), bothE. coliO157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (109and 106E. coliO157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log10cells but did not detect culturable cells. These findings indicate thatE. coliO157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.


1998 ◽  
Vol 111 (15) ◽  
pp. 2181-2188 ◽  
Author(s):  
J. Hagmann ◽  
M. Grob ◽  
A. Welman ◽  
G. van Willigen ◽  
M.M. Burger

Platelets are anuclear, membrane-bounded fragments derived from megakaryocytes which, upon stimulation, assemble an actin skeleton including stress fibres and focal contacts. The focal contacts resemble those of tissue culture cells. However, they lack paxillin, a conspicuous component of these organelles. We found that instead of paxillin, platelets contain a related protein with a molecular mass of 55 kDa that crossreacts with a monoclonal antibody against paxillin. The gene for the 55 kDa protein was cloned from a bone marrow cDNA library and turned out to be identical to a recently discovered gene encoding hic-5. Like paxillin, hic-5 is a cytoskeletal protein containing four carboxy-terminal LIM domains and LD motifs in the amino-terminal half. The LIM domains of both hic-5 and paxillin are capable of targetting green fluorescent protein to focal contacts. In addition, GST-hic-5 precipitates the focal adhesion kinase pp125(FAK) and talin from platelet extracts. Only trace amounts of hic-5 occur in DAMI cells, a megakaryocytic cell line, and in megakaryocytes cultured from CD34+ cells obtained from umbilical cord blood. However, RT-polymerase chain reactions performed with RNA obtained from platelets gave a positive result when primers specific for hic-5 were used, but were negative with paxillin-specific primers, indicating that a switch from paxillin expression to hic-5 expression must occur late in the maturation of megakaryocytes into platelets.


1999 ◽  
Vol 65 (11) ◽  
pp. 4734-4740 ◽  
Author(s):  
J. Kessi ◽  
M. Ramuz ◽  
E. Wehrli ◽  
M. Spycher ◽  
R. Bachofen

ABSTRACT The effect of selenite on growth kinetics, the ability of cultures to reduce selenite, and the mechanism of detoxification of selenium were investigated by using Rhodospirillum rubrum. Anoxic photosynthetic cultures were able to completely reduce as much as 1.5 mM selenite, whereas in aerobic cultures a 0.5 mM selenite concentration was only reduced to about 0.375 mM. The presence of selenite in the culture medium strongly affected cell division. In the presence of a selenite concentration of 1.5 mM cultures reached final cell densities that were only about 15% of the control final cell density. The cell density remained nearly constant during the stationary phase for all of the selenite concentrations tested, showing that the cells were not severely damaged by the presence of selenite or elemental selenium. Particles containing elemental selenium were observed in the cytoplasm, which led to an increase in the buoyant density of the cells. Interestingly, the change in the buoyant density was reversed after selenite reduction was complete; the buoyant density of the cells returned to the buoyant density of the control cells. This demonstrated that R. rubrum expels elemental selenium across the plasma membrane and the cell wall. Accordingly, electron-dense particles were more numerous in the cells during the reduction phase than after the reduction phase.


2000 ◽  
Vol 68 (3) ◽  
pp. 1400-1407 ◽  
Author(s):  
Phillip I. Tarr ◽  
Sima S. Bilge ◽  
James C. Vary ◽  
Srdjan Jelacic ◽  
Rebecca L. Habeeb ◽  
...  

ABSTRACT The mechanisms used by Shiga toxin (Stx)-producingEscherichia coli to adhere to epithelial cells are incompletely understood. Two cosmids from an E. coliO157:H7 DNA library contain an adherence-conferring chromosomal gene encoding a protein similar to iron-regulated gene A (IrgA) ofVibrio cholerae (M. B. Goldberg, S. A. Boyko, J. R. Butterton, J. A. Stoebner, S. M. Payne, and S. B. Calderwood, Mol. Microbiol. 6:2407–2418, 1992). We have termed the product of this gene the IrgA homologue adhesin (Iha), which is encoded by iha. Iha is 67 kDa in E. coliO157:H7 and 78 kDa in laboratory E. coli and is structurally unlike other known adhesins. DNA adjacent toiha contains tellurite resistance loci and is conserved in structure in distantly related pathogenic E. coli, but it is absent from nontoxigenic E. coli O55:H7, sorbitol-fermenting Stx-producing E. coli O157:H−, and laboratory E. coli. We have termed this region the tellurite resistance- and adherence-conferring island. We conclude that Iha is a novel bacterial adherence-conferring protein and is contained within an E. coli chromosomal island of conserved structure. Pathogenic E. coli O157:H7 has only recently acquired this island.


2011 ◽  
Vol 77 (20) ◽  
pp. 7104-7112 ◽  
Author(s):  
Maria Karczmarczyk ◽  
Yvonne Abbott ◽  
Ciara Walsh ◽  
Nola Leonard ◽  
Séamus Fanning

ABSTRACTIn this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection ofEscherichia coliisolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.6%) and contained gene cassettes recognized previously and implicated mainly in resistance to aminoglycosides, β-lactams, and trimethoprim (aadA1,dfrA1-aadA1,dfrA17-aadA5,dfrA12-orfF-aadA2,blaOXA-30-aadA1,aacC1-orf1-orf2-aadA1,dfr7). Class 2 integrons (13.5%) contained thedfrA1-sat1-aadA1gene array. The most frequently occurring phenotypes included resistance to ampicillin (97.3%), chloramphenicol (75.4%), florfenicol (40.5%), gentamicin (54%), neomycin (43.2%), streptomycin (97.3%), sulfonamide (98.6%), and tetracycline (100%). The associated resistance determinants detected includedblaTEM,cat,floR,aadB,aphA1,strA-strB,sul2, andtet(B), respectively. TheblaCTX-M-2gene, encoding an extended-spectrum β-lactamase (ESβL), andblaCMY-2, encoding an AmpC-like enzyme, were identified in 8 and 18 isolates, respectively. The mobility of the resistance genes was demonstrated using conjugation assays with a representative selection of isolates. High-molecular-weight plasmids were found to be responsible for resistance to multiple antimicrobial compounds. The study demonstrated that animal-associated commensalE. coliisolates possess a diverse repertoire of transferable genetic determinants. Emergence of ESβLs and AmpC-like enzymes is particularly significant. To our knowledge, theblaCTX-M-2gene has not previously been reported in Ireland.


2001 ◽  
Vol 183 (12) ◽  
pp. 3704-3711 ◽  
Author(s):  
Scott M. Lohrke ◽  
Hongjiang Yang ◽  
Shouguang Jin

ABSTRACT The ability to utilize Escherichia coli as a heterologous system in which to study the regulation ofAgrobacterium tumefaciens virulence genes and the mechanism of transfer DNA (T-DNA) transfer would provide an important tool to our understanding and manipulation of these processes. We have previously reported that the rpoA gene encoding the alpha subunit of RNA polymerase is required for the expression of lacZ gene under the control of virB promoter (virBp::lacZ) in E. colicontaining a constitutively active virG gene [virG(Con)]. Here we show that an RpoA hybrid containing the N-terminal 247 residues from E. coli and the C-terminal 89 residues from A. tumefaciens was able to significantly express virBp::lacZ in E. coli in a VirG(Con)-dependent manner. Utilization oflac promoter-driven virA and virGin combination with the A. tumefaciens rpoA construct resulted in significant inducer-mediated expression of thevirBp::lacZ fusion, and the level ofvirBp::lacZ expression was positively correlated to the copy number of the rpoA construct. This expression was dependent on VirA, VirG, temperature, and, to a lesser extent, pH, which is similar to what is observed in A. tumefaciens. Furthermore, the effect of sugars on virgene expression was observed only in the presence of thechvE gene, suggesting that the glucose-binding protein ofE. coli, a homologue of ChvE, does not interact with the VirA molecule. We also evaluated other phenolic compounds in induction assays and observed significant expression with syringealdehyde, a low level of expression with acetovanillone, and no expression with hydroxyacetophenone, similar to what occurs in A. tumefaciens strain A348 from which the virA clone was derived. These data support the notion that VirA directly senses the phenolic inducer. However, the overall level of expression of thevir genes in E. coli is less than what is observed in A. tumefaciens, suggesting that additional gene(s) from A. tumefaciens may be required for the full expression of virulence genes in E. coli.


2014 ◽  
Vol 197 (5) ◽  
pp. 905-912 ◽  
Author(s):  
Yuriy A. Knirel ◽  
Nikolai S. Prokhorov ◽  
Alexander S. Shashkov ◽  
Olga G. Ovchinnikova ◽  
Evelina L. Zdorovenko ◽  
...  

The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmentalEscherichia coliisolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen ofE. coliO22, differing only in side-chain α-d-glucosylation in the former, mediated by agtrlocus on the chromosome. Spontaneous mutations ofE. coli4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions ofE. coli4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.


Sign in / Sign up

Export Citation Format

Share Document