scholarly journals Global Analysis of Escherichia coli Gene Expression during the Acetate-Induced Acid Tolerance Response

2001 ◽  
Vol 183 (7) ◽  
pp. 2178-2186 ◽  
Author(s):  
Carrie N. Arnold ◽  
Justin McElhanon ◽  
Aaron Lee ◽  
Ryan Leonhart ◽  
Deborah A. Siegele

ABSTRACT The ability of Escherichia coli to survive at low pH is strongly affected by environmental factors, such as composition of the growth medium and growth phase. Exposure to short-chain fatty acids, such as acetate, proprionate, and butyrate, at neutral or nearly neutral pH has also been shown to increase acid survival of E. coli and Salmonella enterica serovar Typhimurium. To investigate the basis for acetate-induced acid tolerance in E. coli O157:H7, genes whose expression was altered by exposure to acetate were identified using gene arrays. The expression of 60 genes was reduced by at least twofold; of these, 48 encode components of the transcription-translation machinery. Expression of 26 genes increased twofold or greater following treatment with acetate. This included six genes whose products are known to be important for survival at low pH. Five of these genes, as well as six other acetate-induced genes, are members of the E. coli RpoS regulon. RpoS, the stress sigma factor, is known to be required for acid tolerance induced by growth at nonlethal low pH or by entry into stationary phase. Disruption of therpoS gene by a transposon insertion mutation also prevented acetate-induced acid tolerance. However, induction of RpoS expression did not appear to be sufficient to activate the acid tolerance response. Treatment with either NaCl or sodium acetate (pH 7.0) increased expression of anrpoS::lacZ fusion protein, but only treatment with acetate increased acid survival.

1998 ◽  
Vol 61 (5) ◽  
pp. 542-546 ◽  
Author(s):  
LESLYE BRUDZINSKI ◽  
MARK A. HARRISON

The increasing frequency of Escherichia coli O157:H7 outbreaks, especially in acidic foods, raises the concern of an acid tolerance response (ATR). Organic acids can be present in processed and preserved foods: shifts in the acid levels of foods due to these acids may allow E. coli to adapt and later tolerate pH levels that would normally inactivate the organism. The effect of temperature and agitation on the ATRs of three E. coli O157:H7 and two non-O157:H7 isolates were determined. Triggered at pH 5.0, the adaptive System of the ATR allowed for up to nearly 1,000-fold enhanced survival of E. coli O157:H7 cells in some cases compared to survival of nonadapted cells at pH 4.0. E. coli O157:H7 isolates revealed greater acid tolerance responses when incubated statically at 32°C, whereas the non-O157:H7 coli isolates exhibited a greater acid tolerance response with orbital agitation at 25°C. The magnitude of response changed over the incubation period.


2002 ◽  
Vol 48 (5) ◽  
pp. 458-462 ◽  
Author(s):  
Chengru Zhu ◽  
Musangu Ngeleka ◽  
Andrew A Potter ◽  
Brenda J Allan

The Fur (ferric uptake regulator) protein is a master regulator of iron metabolism in gram-negative bacteria. In the present study, the effect of a partial deletion of the fur gene on the acid-tolerance response and in vivo virulence of avian Escherichia coli was examined. The fur mutant was unable to trigger the acid-tolerance response as observed in the wild-type parent strain. However, the mutant was as virulent as the wild-type parent strain when tested in 1-day-old chickens by subcutaneous inoculation. These data indicate that the fur gene is involved in the acid-tolerance response but not involved in the virulence of E. coli, as detected by the ability to cause septicemia in our experimental infection.Key words: E. coli, fur, acid-tolerance response.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Daekeun Hwang ◽  
Seung Min Kim ◽  
Hyun Jung Kim

Abstract Background Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. Results We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. Conclusion The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.


2003 ◽  
Vol 69 (7) ◽  
pp. 3945-3951 ◽  
Author(s):  
E. J. Greenacre ◽  
T. F. Brocklehurst ◽  
C. R. Waspe ◽  
D. R. Wilson ◽  
P. D. G. Wilson

ABSTRACT An acid tolerance response (ATR) has been demonstrated in Listeria monocytogenes and Salmonella enterica serovar Typhimurium in response to low pH poised (i.e., adapted) with acetic or lactic acids at 20°C and modeled by using dynamic differential equations. The ATR was not immediate or prolonged, and optimization occurred after exposure of L. monocytogenes for 3 h at pH 5.5 poised with acetic acid and for 2 h at pH 5.5 poised with lactic acid and after exposure of S. enterica serovar Typhimurium for 2 h at pH 5.5 poised with acetic acid and for 3 h at pH 5.5 poised with lactic acid. An objective mechanistic analysis of the acid inactivation data yielded estimates of the duration of the shoulder (t s ), the log-linear decline (k max), and the magnitude of a critical component (C). The magnitude of k max gave the best agreement with estimates of conditions for optimum ATR induction made from the raw data.


2015 ◽  
Vol 81 (23) ◽  
pp. 8054-8065 ◽  
Author(s):  
Daniel Ryan ◽  
Niladri Bhusan Pati ◽  
Urmesh K. Ojha ◽  
Chandrashekhar Padhi ◽  
Shilpa Ray ◽  
...  

ABSTRACTSalmonella entericaserovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability ofS. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, whichS. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability ofS. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis ofS. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than −1.5-fold;P< 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute toS. Typhimurium ATR and virulence. Mutants lacking genes encoding the K+binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed variedin vitrovirulence characteristics. This study offers greater insight into the transcriptome changes ofS. Typhimurium under the ATR and provides a framework for further research on the subject.


1998 ◽  
Vol 180 (9) ◽  
pp. 2409-2417 ◽  
Author(s):  
Bradley L. Bearson ◽  
Lee Wilson ◽  
John W. Foster

ABSTRACT The acid tolerance response enables Salmonella typhimurium to survive exposures to potentially lethal acidic environments. The acid stress imposed in a typical assay for acid tolerance (log-phase cells in minimal glucose medium) was shown to comprise both inorganic (i.e., low pH) and organic acid components. A gene previously determined to affect acid tolerance, atbR, was identified as pgi, the gene encoding phosphoglucoisomerase. Mutations in pgi were shown to increase acid tolerance by preventing the synthesis of organic acids. Protocols designed to separate the stresses of inorganic from organic acids revealed that the regulators ς38 (RpoS), Fur, and Ada have major effects on tolerance to organic acid stress but only minor effects on inorganic acid stress. In contrast, the two-component regulatory system PhoP (identified as acid shock protein ASP29) and PhoQ proved to be important for tolerance to organic acid stress but had little effect against organic acid stress. PhoP mutants also failed to induce four ASPs, confirming a role for this regulator in acid tolerance. Acid shock induction of PhoP appears to occur at the transcriptional level and requires the PhoPQ system. Furthermore, induction by acid occurs even in the presence of high concentrations of magnesium, the ion known to be sensed by PhoQ. These results suggest that PhoQ can sense both Mg2+ and pH. SincephoP mutants are avirulent, the low pH activation of this system has important implications concerning the pathogenesis ofS. typhimurium. The involvement of four regulators, two of which are implicated in virulence, underscores the complexity of the acid tolerance stress response and further suggests that features of acid tolerance and virulence are interwoven.


Sign in / Sign up

Export Citation Format

Share Document