scholarly journals Transcriptome changes and polymyxin resistance of acid-adapted Escherichia coli O157:H7 ATCC 43889

Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Daekeun Hwang ◽  
Seung Min Kim ◽  
Hyun Jung Kim

Abstract Background Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. Results We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. Conclusion The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 250
Author(s):  
Hyejin Cho ◽  
Atanu Naskar ◽  
Sohee Lee ◽  
Semi Kim ◽  
Kwang-Sun Kim

Resistance to polymyxins when treating multidrug-resistant (MDR) Gram-negative bacterial infections limit therapeutic options. Here, we report the synthesis of a nickel (Ni) doped Zinc oxide (NZO) combined with black phosphorus (BP) (NZB) nanocomposite and its synergistic action with polymyxin B (PolB) against polymyxin-resistant Escherichia coli harboring mobilized colistin resistance (mcr-1) gene. NZB and PolB combination therapy expressed a specific and strong synergy against Mcr-1 expressing E. coli cells. The underlying mechanism of the synergy is the charge neutralization of the E. coli cell surface by NZB, resulting in a more feasible incorporation of PolB to E. coli. The synergistic concentration of NZB with PolB was proved biocompatible. Thus, the NZB is the first biocompatible nano-adjuvant to polymyxins against polymyxin-resistant E. coli cells, recognizing the physical status of bacteria instead of known adjuvants targeting cellular gene products. Therefore, NZB has the potential to revive polymyxins as leading last-resort antibiotics to combat polymyxin-resistant Gram-negative bacterial infections.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 597
Author(s):  
Luca Pierantoni ◽  
Laura Andreozzi ◽  
Simone Ambretti ◽  
Arianna Dondi ◽  
Carlotta Biagi ◽  
...  

Urinary tract infections (UTIs) are among the most common bacterial infections in children, and Escherichia coli is the main pathogen responsible. Several guidelines, including the recently updated Italian guidelines, recommend amoxicillin-clavulanic acid (AMC) as a first-line antibiotic therapy in children with febrile UTIs. Given the current increasing rates of antibiotic resistance worldwide, this study aimed to investigate the three-year trend in the resistance rate of E. coli isolated from pediatric urine cultures (UCs) in a metropolitan area of northern Italy. We conducted a retrospective review of E. coli-positive, non-repetitive UCs collected in children aged from 1 month to 14 years, regardless of a diagnosis of UTI, catheter colonization, urine contamination, or asymptomatic bacteriuria. During the study period, the rate of resistance to AMC significantly increased from 17.6% to 40.2% (p < 0.001). Ciprofloxacin doubled its resistance rate from 9.1% to 16.3% (p = 0.007). The prevalence of multidrug-resistant E. coli rose from 3.9% to 9.2% (p = 0.015). The rate of resistance to other considered antibiotics remained stable, as did the prevalence of extended spectrum beta-lactamases and extensively resistant E. coli among isolates. These findings call into question the use of AMC as a first-line therapy for pediatric UTIs in our population, despite the indications of recent Italian guidelines.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Silpak Biswas ◽  
Mohammed Elbediwi ◽  
Guimin Gu ◽  
Min Yue

Colistin is considered to be a ‘last-resort’ antimicrobial for the treatment of multidrug-resistant Gram-negative bacterial infections. Identification of Enterobacteriaceae, carrying the transferable colistin resistance gene mcr-1, has recently provoked a global health concern. This report presents the first detection of a hydrogen sulfide (H2S)-producing Escherichia coli variant isolated from a human in China, with multidrug resistance (MDR) properties, including colistin resistance by the mcr-1 gene, which could have great implications for the treatment of human infections.


2019 ◽  
Vol 18 (1) ◽  
pp. 67-76 ◽  
Author(s):  
David Ortega-Paredes ◽  
Pedro Barba ◽  
Santiago Mena-López ◽  
Nathaly Espinel ◽  
Verónica Crespo ◽  
...  

Abstract Urban river pollution by multidrug-resistant (MDR) bacteria constitutes an important public health concern. Epidemiologically important strains of MDR Escherichia coli transmissible at the human–animal–environment interfaces are especially worrying. Quantifying and characterizing MDR E. coli at a molecular level is thus imperative for understanding its epidemiology in natural environments and its role in the spread of resistance in precise geographical areas. Cefotaxime-resistant E. coli was characterized along the watercourse of the major urban river in Quito. Our results showed high quantities of cefotaxime-resistant E. coli (2.7 × 103–5.4 × 105 CFU/100 mL). The antimicrobial resistance index (ARI) revealed the exposure of the river to antibiotic contamination, and the multiple antibiotic resistance index indicated a high risk of contamination. The blaCTX-M-15 gene was the most prevalent in our samples. Isolates also had class 1 integrons carrying aminoglycoside-modifying enzymes and folate pathway inhibitors. The isolates belonged to phylogroups A, B1 and D. Clonal complex 10 was found to be the most prevalent (ST10, ST44 and ST 167), followed by ST162, ST394 and ST46. Our study provides a warning about the high potential of the major urban river in Quito for spreading the epidemiologically important MDR E. coli.


Author(s):  
Taniya Bardhan ◽  
Madhurima Chakraborty ◽  
Bornali Bhattacharjee

Indiscriminate use of antibiotics has resulted in a catastrophic increase in the levels of antibiotic resistance in India. Hospitals treat critical bacterial infections and thus can serve as reservoirs of multidrug resistant (MDR) bacteria. Hence, this study was conducted to gauge the prevalence patterns of MDR bacteria in hospital wastewater. Water samples collected from 11 hospitals and 4 environmental sources belonging to 5 most-densely populated districts of West Bengal, India were grown on MacConkey and Eosin Methylene Blue agar. A total of 84 (hospital-associated = 70, environmental water sources = 14) isolates were characterized. The predominant species found in water from hospital-associated areas (HAA) were Acinetobacter baumannii (22.9%), Escherichia coli (28.6 %), and Klebsiella pneumoniae (25.7%). Greater than 75% of the HAA isolates were found to be mcr-1 gene negative and colistinresistant. Meropenem non-susceptibility was also high among the HAA isolates at 58.6%, with the presence of the carbapenemase gene and blaNDM in 67.1% of the non-susceptible isolates. Among the three predominant species, significantly higher numbers of E. coli isolates were found to be non-susceptible to meropenem ((80%), p-value = 0.00432) and amikacin (AK (90%), p-value = 0.00037). This study provides evidence for the presence of high numbers of colistin-resistant and carbapenem-hydrolyzing Proteobacteriain hospital wastewater.


2017 ◽  
Vol 81 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Nahla O. Eltai ◽  
Elmoubasher A. Abdfarag ◽  
Hamad Al-Romaihi ◽  
Eman Wehedy ◽  
Mahmoud H. Mahmoud ◽  
...  

ABSTRACT Antibiotic resistance (AR) is a growing public health concern worldwide, and it is a top health challenge in the 21st century. AR among Enterobacteriaceae is rapidly increasing, especially in third-generation cephalosporins and carbapenems. Further, strains carrying mobilized colistin resistance (mcr) genes 1 and 2 have been isolated from humans, food-producing animals, and the environment. The uncontrolled use of antibiotics in food-producing animals is a major factor in the generation and spread of AR. No studies have been done to evaluate AR in the veterinary sector of Qatar. This study aimed at establishing primary baseline data for the prevalence of AR among food-producing animals in Qatar. Fecal samples (172) were obtained from two broiler farms and one live bird market in Qatar, and 90 commensal Escherichia coli bacteria were isolated and subjected to susceptibility testing against 16 clinically relevant antibiotics by using the E-test method. The results found that 81 (90%) of 90 isolates were resistant to at least one antibiotic, 14 (15.5%) of 90 isolates were colistin resistant, 2 (2.2%) of 90 isolates were extended-spectrum β-lactamase producers, and 2 (2.2%) of 90 isolates were multidrug resistant to four antibiotic classes. Extended-spectrum β-lactamase–producing E. coli and colistin-resistant isolates were confirmed by using double-disc susceptibility testing and PCR, respectively. Such a high prevalence of antibiotic-resistant E. coli could be the result of a long application of antibiotic treatment, and it is an indicator of the antibiotic load in food-producing animals in Qatar. Pathogens carrying AR can be easily transmitted to humans through consumption of undercooked food or noncompliance with hygiene practices, mandating prompt development and implementation of a stewardship program to control and monitor the use of antibiotics in the community and agriculture.


2021 ◽  
Vol 8 ◽  
Author(s):  
Joshua Mbanga ◽  
Daniel G. Amoako ◽  
Akebe L. K. Abia ◽  
Mushal Allam ◽  
Arshad Ismail ◽  
...  

There is limited information on the comparative genomic diversity of antibiotic-resistant Escherichia coli from wastewater. We sought to characterize environmental E. coli isolates belonging to various pathotypes obtained from a wastewater treatment plant (WWTP) and its receiving waters using whole-genome sequencing (WGS) and an array of bioinformatics tools to elucidate the resistomes, virulomes, mobilomes, clonality, and phylogenies. Twelve multidrug-resistant (MDR) diarrheagenic E. coli isolates were obtained from the final effluent of a WWTP, and the receiving river upstream and downstream of the WWTP were sequenced on an Illumina MiSeq machine. The multilocus sequence typing (MLST) analysis revealed that multiple sequence types (STs), the most common of which was ST69 (n = 4) and ST10 (n = 2), followed by singletons belonging to ST372, ST101, ST569, ST218, and ST200. One isolate was assigned to a novel ST ST11351. A total of 66.7% isolates were positive for β-lactamase genes with 58.3% harboring the blaTEM1B gene and a single isolate the blaCTX−M−14 and blaCTX−M−55 extended-spectrum β-lactamase (ESBL) genes. One isolate was positive for the mcr-9 mobilized colistin resistance gene. Most antibiotic resistance genes (ARGs) were associated with mobile genetic support: class 1 integrons (In22, In54, In191, and In369), insertion sequences (ISs), and/or transposons (Tn402 or Tn21). A total of 31 virulence genes were identified across the study isolates, including those responsible for adhesion (lpfA, iha, and aggR), immunity (air, gad, and iss), and toxins (senB, vat, astA, and sat). The virulence genes were mostly associated with IS (IS1, IS3, IS91, IS66, IS630, and IS481) or prophages. Co-resistance to heavy metal/biocide, antibiotics were evident in several isolates. The phylogenomic analysis with South African E. coli isolates from different sources (animals, birds, and humans) revealed that isolates from this study mostly clustered with clinical isolates. Phylogenetics linked with metadata revealed that isolates did not cluster according to source but according to ST. The occurrence of pathogenic and MDR isolates in the WWTP effluent and the associated river is a public health concern.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pin-Chieh Wu ◽  
Ming-Fang Cheng ◽  
Wan-Ling Chen ◽  
Wan-Yu Hung ◽  
Jiun-Ling Wang ◽  
...  

Colistin is the last resort antimicrobial for treating multidrug-resistant gram-negative bacterial infections. The plasmid-mediated colistin resistance gene, mcr-1, crucially influences colistin’s resistance transmission. Human fecal carriages of mcr-1-positive Escherichia coli (E. coli) were detected in many regions worldwide; however, only a few studies have focused on children. Therefore, we identified the prevalence and risk factors of mcr-1-positive E. coli in fecal carriages among community children in Southern Taiwan. In this study, 510 stool samples were collected from April 2016 to August 2019 from the pediatric department at a medical center in Southern Taiwan. These samples were collected within 3 days after admission and were all screened for the presence of the mcr-1 gene. Diet habits, travel history, pet contact, and medical history were also obtained from participants to analyze the risk factors of their fecal carriages to mcr-1-positive E. coli. Antimicrobial susceptibility testing was determined using the VITEK 2 system and the broth microdilution test. Twelve mcr-1-positive E. coli. were isolated from 2.4% of the fecal samples. Through multivariate analysis, frequent chicken consumption (at least 3 times per week) had a significantly positive association with the presence of mcr-1-positive E. coli in fecal carriages (adjust odds ratio 6.60, 95% confidence interval1.58– 27.62, p = 0.033). Additionally, multidrug resistance was more common in mcr-1-positive E. coli. (75.0% vs. 39.5%, p = 0.031) than in non-mcr-1-positive Escherichia coli. Furthermore, the percentage of extraintestinal pathogenic E. coli in mcr-1-positive isolates was 83.3%. Some multi-locus sequence types in our mcr-1-positive E. coli were also similar to those isolated from food animals in the literature. The prevalence of fecal carriages of mcr-1-positive E. coli was low among community children in Southern Taiwan. Our data shows that chicken consumption with a higher frequency increases the risk of mcr-1-positive E. coli. in fecal carriages.


1998 ◽  
Vol 61 (5) ◽  
pp. 542-546 ◽  
Author(s):  
LESLYE BRUDZINSKI ◽  
MARK A. HARRISON

The increasing frequency of Escherichia coli O157:H7 outbreaks, especially in acidic foods, raises the concern of an acid tolerance response (ATR). Organic acids can be present in processed and preserved foods: shifts in the acid levels of foods due to these acids may allow E. coli to adapt and later tolerate pH levels that would normally inactivate the organism. The effect of temperature and agitation on the ATRs of three E. coli O157:H7 and two non-O157:H7 isolates were determined. Triggered at pH 5.0, the adaptive System of the ATR allowed for up to nearly 1,000-fold enhanced survival of E. coli O157:H7 cells in some cases compared to survival of nonadapted cells at pH 4.0. E. coli O157:H7 isolates revealed greater acid tolerance responses when incubated statically at 32°C, whereas the non-O157:H7 coli isolates exhibited a greater acid tolerance response with orbital agitation at 25°C. The magnitude of response changed over the incubation period.


2017 ◽  
Vol 2 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Guido Stichtenoth ◽  
Marie Haegerstrand-Björkman ◽  
Gabi Walter ◽  
Bim Linderholm ◽  
Egbert Herting ◽  
...  

Background: Ascending maternofetal bacterial infections often result in premature birth and neonatal respiratory distress. These neonates are treated with exogenous pulmonary surfactant (SF) and systemic antibiotics. Polymyxins are antimicrobiotic peptides that may bind to SF phospholipids. Objectives: Does topical administration of SF/polymyxin reduce bacterial growth in neonatal rabbit pneumonia and improve pulmonary function? Methods: Neonatal rabbits were tracheotomized and treated intratracheally with mixtures of porcine SF, SF/polymyxin E (PxE), or polymyxin B (PxB). Control animals received saline. Animals were then inoculated with Escherichia coli and ventilated for 4 h. During the experiment, peak insufflation pressures, dynamic lung compliance, and ECG were recorded. Pulmonary and renal bacterial load were determined. Lung histology was performed. Lung and kidney IL-8 were measured in subgroups. Results: Eighty-five animals were included in 2 experimental series, of which 78% survived 4 h of ventilation. E. coli inoculation caused severe neonatal pneumonia with median IL-8 levels of 2.2 ng/g in the lungs compared to a median of 0.2 ng/g in the lungs of the saline controls (p < 0.01). Lung compliance after 4 h was significantly increased at a mean of 0.48 ml/(kg·cm H2O) in the SF group and 0.43 in the SF + PxE group compared to 0.35 in the E. coli group (p < 0.01). In direct comparison, bacterial growth found in the E. coli group was reduced 20-fold in the SF + PxB group compared to 75-fold in the SF + PxE group. Conclusion: Addition of polymyxin to SF effectively promotes antimicrobial treatment and improves lung function in neonatal pneumonia of rabbits.


Sign in / Sign up

Export Citation Format

Share Document