scholarly journals Recruitment of the mecA Gene Homologue ofStaphylococcus sciuri into a Resistance Determinant and Expression of the Resistant Phenotype inStaphylococcus aureus

2001 ◽  
Vol 183 (8) ◽  
pp. 2417-2424 ◽  
Author(s):  
Shang Wei Wu ◽  
Herminia de Lencastre ◽  
Alexander Tomasz

ABSTRACT Strains of methicillin-resistant Staphylococcus aureus (MRSA) have become the most important causative agents of hospital-acquired diseases worldwide. The genetic determinant of resistance, mecA, is not a gene native to S. aureus but was acquired from an extraspecies source by an unknown mechanism. We recently identified a close homologue of this gene in isolates of Staphylococcus sciuri, a taxonomically primitive staphylococcal species recovered most frequently from rodents and primitive mammals. In spite of the close sequence similarity between the mecA homologue ofS. sciuri and the antibiotic resistance determinantmecA of S. aureus, S. sciuri strains were found to be uniformly susceptible to β-lactam antibiotics. In an attempt to activate the apparently “silent” mecA gene of S. sciuri, a methicillin-resistant derivative, K1M200 (for which the MIC of methicillin is 200 μg/ml), was obtained through stepwise exposure of the parental strain S. sciuri K1 (methicillin MIC of 4 μg/ml) to increasing concentrations of methicillin. DNA sequencing of the mecA homologue from K1M200 revealed the introduction of a point mutation into the −10 consensus of the promoter: the replacement of a thymine residue at nucleotide 1577 in the susceptible strain K1 by adenine in the resistant strain K1M200, which was accompanied by a drastic increase in transcription rate and the appearance of a new protein that reacted with monoclonal antibody prepared against the penicillin-binding protein 2A (PBP2A), i.e., the gene product of S. aureus mecA. Transduction ofmecA from K1M200 (cloned into a plasmid vector) into a methicillin-susceptible S. aureus mutant resulted in a significant increase of methicillin resistance (from a methicillin MIC of 4 μg/ml to 12 and up to 50 μg/ml), the appearance of a low-affinity PBP detectable by the fluorographic assay, and the production of a protein that reacted in a Western blot with monoclonal antibody to PBP2A. Antibiotic resistance and the protein products disappeared upon removal of the plasmid-borne mecAhomologue. The observations support the proposition that themecA homologue ubiquitous in the antibiotic-susceptible animal species S. sciuri may be an evolutionary precursor of the methicillin resistance gene mecA of the pathogenic strains of MRSA.

2021 ◽  
Vol 14 (5) ◽  
pp. 420
Author(s):  
Tanveer Ali ◽  
Abdul Basit ◽  
Asad Mustafa Karim ◽  
Jung-Hun Lee ◽  
Jeong-Ho Jeon ◽  
...  

β-Lactam antibiotics target penicillin-binding proteins and inhibit the synthesis of peptidoglycan, a crucial step in cell wall biosynthesis. Staphylococcus aureus acquires resistance against β-lactam antibiotics by producing a penicillin-binding protein 2a (PBP2a), encoded by the mecA gene. PBP2a participates in peptidoglycan biosynthesis and exhibits a poor affinity towards β-lactam antibiotics. The current study was performed to determine the diversity and the role of missense mutations of PBP2a in the antibiotic resistance mechanism. The methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical samples were identified using phenotypic and genotypic techniques. The highest frequency (60%, 18 out of 30) of MRSA was observed in wound specimens. Sequence variation analysis of the mecA gene showed four amino acid substitutions (i.e., E239K, E239R, G246E, and E447K). The E239R mutation was found to be novel. The protein-ligand docking results showed that the E239R mutation in the allosteric site of PBP2a induces conformational changes in the active site and, thus, hinders its interaction with cefoxitin. Therefore, the present report indicates that mutation in the allosteric site of PBP2a provides a more closed active site conformation than wide-type PBP2a and then causes the high-level resistance to cefoxitin.


2021 ◽  
Vol 14 (6) ◽  
pp. 592
Author(s):  
Pavarish Jantorn ◽  
Hawaree Heemmamad ◽  
Tanawan Soimala ◽  
Saowakon Indoung ◽  
Jongkon Saising ◽  
...  

Staphylococcus pseudintermedius is a zoonotic pathogen that can cause life-threatening infections in animals and humans. The study of methicillin-resistant S. pseudintermedius (MRSP) and its ability to produce biofilms is important to select the most suitable treatment. The prevalence and characteristics of S. pseudintermedius isolated from dogs admitted at the Veterinary Teaching Hospital, Prince of Songkla University, Thailand were assessed. Results showed that 28.30% (15/53) of the isolates were MRSP. Amplification of the mecA gene was observed in 93.33% (14/15) MRSP. Methicillin-resistant strains revealed co-resistant patterns against other antibiotics, including chloramphenicol, clindamycin, tetracycline, clarithromycin, ciprofloxacin, and trimethoprim. In this study, all bacterial isolates produced biofilms, while 90.55% of S. pseudintermedius isolates were strong or moderate biofilm producers. Most (45–60%) of the resistant strains were strong biofilm producers, while the correlation between biofilm production and antibiotic resistance was not statistically significant. This is the first study in southern Thailand to investigate the drug-resistant profile of S. pseudintermedius and its ability to form biofilm. The results will contribute to a better understanding of the emergence and prevalence of antimicrobial resistance in S. pseudintermedius.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 920
Author(s):  
Joaquín Rey Pérez ◽  
Laura Zálama Rosa ◽  
Alfredo García Sánchez ◽  
Javier Hermoso de Mendoza Salcedo ◽  
Juan Manuel Alonso Rodríguez ◽  
...  

The aim of this study was to investigate the presence of methicillin-resistant Staphylococcus (MRS) strains in non-managed wild ungulates present in a typical Mediterranean forest in Spain. For this purpose, nasal swabs were obtained from 139 animals: 90 wild boar (Sus scrofa), 42 red deer (Cervus elaphus) and 7 fallow deer (Dama dama), which were subsequently pre-enriched in BHI+ NaCl (6.5%) (24 h/37 °C), and then seeded in Columbia blood agar (24 h/37 °C)). The presence of the mecA gene was investigated by PCR, first from the confluent and then from individual colonies. A total of 10 mecA+ colonies were obtained of which only seven showed phenotypic resistance to oxacillin/cefoxitin (methicillin resistance). All MRS strains belonged to the Staphylococcus sciuri group. Methicillin-resistant Staphylococcus aureus (MRSA) was not detected. In addition, a significant number of MRS strains showed resistance to other antimicrobials, mainly β-lactam (7/7), gentamicin (7/7), fusidic acid (6/7) and quinupristin–dalfopristin (6/7), showing an irregular correlation with their coding genes. The genetic profiles grouped the seven strains obtained according to the bacterial species but not in relation to the animal source or the geographical place of origin. The presence of SCCmec type III, common to animals and humans, has been detected in three of the strains obtained. In conclusion, the study reveals that the wild ungulates investigated play a role as potential reservoirs of multi-resistant strains of MRS. Such strains, due to their characteristics, can be easily transferred to other wild or domestic animal species and ultimately to humans through their products.


2021 ◽  
Vol 67 (2) ◽  
pp. 3372-3382
Author(s):  
Brigitta Horváth ◽  
Ferenc Peles ◽  
Judit Gasparikné Reichardt ◽  
Edit Pocklán ◽  
Rita Sipos ◽  
...  

The presence of methicillin-resistant Staphylococcus aureus (MRSA) strains in the food chain has been confirmed by several studies in the European Union, but there are only limited data available in Hungary. The objective of the present study was to investigate the antibiotic resistance of Staphylococcus strains isolated from foods, using classical microbiological, molecular biological methods and the MALDI-TOF-MS technique, as well as the multi-locus sequence typing (MLST) of antibiotic resistant strains. During the study, 47 coagulase-positive (CPS) and 30 coagulase-negative (CNS) Staphylococcus isolates were collected. In the course of the MALDI-TOF-MS investigations, all CPS isolates (n=47) were found to be S. aureus species, while 8 different species were identified in the case of the CNS strains. Methicillin resistance was confirmed in two S. aureus strains, one of which had a sequence type not yet known, while the other MRSA strain was type ST398, which is the most common type of MRSA strain isolated from farm animals in the EU/EEA. (The abbreviation “MRSA” is often used in common parlance, but occasionally in the literature to denote “multidrug-resistant Staphylococcus aureus”. In the authors’ manuscript - the methicillin-resistant pathogen is correctly designated as such. Ed.)


2020 ◽  
Vol 27 (07) ◽  
pp. 1363-1370
Author(s):  
Aneela Khawaja ◽  
Iffat Javed ◽  
Sohaila Mushtaq ◽  
Saeed Anwar ◽  
Faiqa Arshad ◽  
...  

Antimicrobial resistance (AMR) is a devastating question that is threatening the health globally. The extensive and indiscriminative use of antibiotics has evolved a notorious resistance in Staphylococcus aureus.  This resistance developed through possession of mecA gene, which codes for modified penicillin binding protein (PBP2a) and the emergent strain being labeled “methicillin resistant Staphylococcus aureus”. Conventional phenotypic techniques for detection of MRSA rely on standardization of cultural characteristics. The drawbacks of diagnostic error to report MRSA include: poor prognosis, expensive treatment, dissemination of multi-drug resistant strains and even treatment failure. Latex agglutination method can be adopted as a more accurate and quick strategy for rapid detection of methicillin resistance. Objectives: To compare detection of mecA gene in methicillin resistant isolates of Staphylococcus aureus by latex agglutination and PCR; by assessing the sensitivity and specificity of both methods. Study Design: Descriptive Cross-Sectional study. Setting: Pathology Department, Post Graduate Medical Institute, Lahore. Period: From January 2015 to December 2015; according to standard operating procedures at Microbiology laboratory. Material & Methods: A total 713 consecutive, non-duplicate isolates of Staphylococcus aureus were processed. Methicillin resistance was determined using cefoxitin (30mg) by Kirby-Bauer method using CLSI guideline (2016), latex agglutination method; and PCR for mecA gene. Results: The results showed that out of 713 Staphylococcus aureus isolates, 92 (12.90%) isolates were resistant to cefoxitin and were labelled as MRSA. majority MRSA isolates recovered from pus (44.57%) and wound swab (20.65%), followed by blood (13.04%), fluid (8.70%), CSF (4.35%), CVP (3.26%), HVS (3.26%) and tracheal secretion (2.17%). By latex agglutination method, 87 (94.50%) were positive for PBP2a; while on PCR mecA gene was detected only in 82 (89.10%) MRSA isolates. When assessed with PCR (gold standard) the sensitivity and diagnostic accuracy of latex agglutination was 100% and 94.57%, respectively. Conclusion: Latex agglutination test can be employed as rapid and reliable diagnostic technique in MRSA isolates for mecA gene detection, where resources for molecular methods are inadequate. This can effectually lessen the misdiagnosis of resistant strains, and over/ ill-use of antibiotics.


2011 ◽  
Vol 5 (10) ◽  
pp. 692-699 ◽  
Author(s):  
Maha Abd El Hafez ◽  
Noha G. Khalaf ◽  
Mohamed El Ahmady ◽  
Ahmed Abd El Aziz ◽  
Abd El Gawad Hashim

Introduction: Staphylococcus epidermidis is a pathogen associated with nosocomial infection in neonatal intensive care units (NICU). This study investigates an outbreak of methicillin resistant S. epidermidis in an NICU in a hospital in Saudi Arabia. Methodology: A total of 41 isolates identified as Gram-positive cocci were obtained from blood culture, umbilical wound swabs and endotracheal aspirate specimens of neonates, of which 29 were identified as S. epidermidis. Bacterial identification at the species level and determination of antibiotic resistance were performed by MicroScan (Dade Behring, USA). Genotyping was completed using randomly amplified polymorphic DNA (RAPD) and the mecA gene was detected by PCR. Results: All 29 S. epidermidis isolates were found to be resistant to oxacillin and were positive for the mecA gene. The isolates showed several multidrug-resistance patterns; the resistance rates to gentamicin, erythromycin, clindamycin, and trimethoprim/sulfamethoxazole were 89.7%, 86.2%, 75.9% and 72.4%, respectively. All isolates were susceptible to vancomycin, teicoplanin, rifampin, synercid, and ciprofloxacin. Several genotypic and phenotypic patterns were detected among the S. epidermidis isolates: antibiogram typing showed seven different patterns, one of which was shared by 65% of the isolates, whereas the most prevalent RAPD genotype was shared by only five S. epidermidis isolates, and did not correlate with antibiotic resistance phenotype. Conclusion: The diverse clonal origin of tested isolates indicates the presence of multiple S. epidermidis strains among neonates in the NICU setting


Author(s):  
Abolfazl Jafari-Sales ◽  
Zahra Sadeghi Deylamdeh ◽  
Afsoon Shariat

Introduction: Staphylococcus aureus causes a wide range of infections and as a multivalent pathogen is one of the causative agents of nosocomial and community infections. Therefore, the aim of this study was to identify and determine the pattern of antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients in hospitals and medical centers in Marand city and also to evaluate the presence of mecA gene. Materials and Methods: In this cross-sectional descriptive study, 385 samples of S. aureus were collected from different clinical samples of patients in hospitals and medical centers of Marand city. S. aureus was identified using standard biochemical methods.  Methicillin resistance was determined by disk diffusion method in the presence of oxacillin and cefoxitin. The pattern of antibiotic resistance of the strains was determined by disk diffusion method and according to CLSI recommendation and also PCR method was used to evaluate the frequency of MecA gene. Results: In the present study, out of 385 samples of S. aureus, 215 (55.84%) samples were methicillin resistant. PCR results for mecA gene showed that 110 samples had mecA gene.  The highest antibiotic resistance was observed against penicillin (100%) and erythromycin (83.63%). Most MRSA were isolated from urine and wound samples. Conclusion: The results of this study indicate the prevalence of methicillin-resistant species and also the increase in antibiotic resistance of MRSA to various antibiotics.  Therefore, in order to prevent increased resistance to other antibiotics, it is recommended to avoid inappropriate use of antibiotics.


2018 ◽  
Vol 38 (12) ◽  
pp. 2233-2236
Author(s):  
Carolina B. Scherer ◽  
Larissa S. Botoni ◽  
Antônio U. Carvalho ◽  
Kelly M. Keller ◽  
Adriane P. Costa-Val

ABSTRACT: Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) being a constant concern, ceftaroline fosamil has been recently approved as a new cephalosporin, active against MRSA, for use in humans; only rare cases of resistance have been reported till date. There is no report of resistance to ceftaroline in Staphylococcus pseudintermedius, which is the main bacterium causing dermatitis and otitis in dogs. To evaluate staphylococcal resistance to ceftaroline, 35 isolates of methicillin-resistant S. pseudintermedius (MRSP), carrying the mecA gene, from 26 dogs with folliculitis and nine dogs with external otitis, underwent disk diffusion test with cefoxitin, oxacillin, and ceftaroline. Tests with cefoxitin and oxacillin showed > 90% sensitivity in methicillin resistance detection. In the disk diffusion test, 97.14% (34/35) were resistant to cefoxitin, 94.29% (33/35) to oxacillin, and 31.43% (11/35) to ceftaroline. Of the ceftaroline-resistant strains, 27.27% (3/11) were obtained from the ears of dogs while the rest (8/11) were from the skin. The current report is the first description of MRSP resistance to ceftaroline.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Saliha Bounar-Kechih ◽  
Mossadak Taha Hamdi ◽  
Hebib Aggad ◽  
Nacima Meguenni ◽  
Zafer Cantekin

Multiresistant and especially Methicillin-Resistant Staphylococcus aureus (MRSA) poses a serious public health problem that requires their immediate identification and antibiotic resistance characteristics. In order to determine antibiotic resistance S. aureus poultry and bovine origin, 8840 samples were collected from slaughterhouses in the northern region of Algeria between years 2009 and 2014. 8375 samples were from an avian origin (1875 from laying hens and 6500 from broiler chickens) and the rest was from bovine origin. Bacteriological isolation and identification were made by classical culture method and antibiotic resistance patterns were determined by disc diffusion test. The prevalence of S. aureus was 42% in laying hens, 12% in broilers, and 55% in bovine samples. The prevalence of MRSA was 57%, 50%, and 31% in laying hens, broiler chickens, and bovine, respectively. While MRSA strains isolated from poultry showed cross-resistance to aminoglycosides, fluoroquinolones, macrolides, sulphonamides, and cyclins, those isolated from bovine also revealed similar multiresistance except for sulphonamide. This high percentage of methicillin resistance and multidrug resistance in S. aureus poultry and bovine origin may have importance for human health and curing of human infections.


Sign in / Sign up

Export Citation Format

Share Document