scholarly journals Role for Vitamin B12 in Light Induction of Gene Expression in the Bacterium Myxococcus xanthus

2002 ◽  
Vol 184 (8) ◽  
pp. 2215-2224 ◽  
Author(s):  
María Cervantes ◽  
Francisco J. Murillo

ABSTRACT A light-inducible promoter (PB) drives the carB operon (carotenoid genes) of the bacterium Myxococcus xanthus. A gene encoding a regulator of carotenoid biosynthesis was identified by studying mutant strains carrying a transcriptional fusion to PB and deletions in three candidate genes. Our results prove that the identified gene, named carA, codes for a repressor of the PB promoter in the dark. They also show that the carA gene product does not participate in the light activation of two other promoters connected with carotenoid synthesis or its regulation in M. xanthus. CarA is a novel protein consisting of a DNA-binding domain of the family of MerR helix-turn-helix transcriptional regulators, directly joined to a cobalamin-binding domain. In support of this, we report here that the presence of vitamin B12 or some other cobalamin derivatives is absolutely required for activation of the PB promoter by light.

2003 ◽  
Vol 73 (6) ◽  
pp. 1459-1464 ◽  
Author(s):  
Christina L. Liquori ◽  
Michel J. Berg ◽  
Adrian M. Siegel ◽  
Elizabeth Huang ◽  
Jon S. Zawistowski ◽  
...  

Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1399-1412 ◽  
Author(s):  
Thomas S Lendvay ◽  
Danna K Morris ◽  
Jeannie Sah ◽  
Bhuvana Balasubramanian ◽  
Victoria Lundblad

The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cermzsiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.


2020 ◽  
Vol 9 (1) ◽  
pp. 71
Author(s):  
Julia Marente ◽  
Javier Avalos ◽  
M. Carmen Limón

Carotenoid biosynthesis is a frequent trait in fungi. In the ascomycete Fusarium fujikuroi, the synthesis of the carboxylic xanthophyll neurosporaxanthin (NX) is stimulated by light. However, the mutants of the carS gene, encoding a protein of the RING finger family, accumulate large NX amounts regardless of illumination, indicating the role of CarS as a negative regulator. To confirm CarS function, we used the Tet-on system to control carS expression in this fungus. The system was first set up with a reporter mluc gene, which showed a positive correlation between the inducer doxycycline and luminescence. Once the system was improved, the carS gene was expressed using Tet-on in the wild strain and in a carS mutant. In both cases, increased carS transcription provoked a downregulation of the structural genes of the pathway and albino phenotypes even under light. Similarly, when the carS gene was constitutively overexpressed under the control of a gpdA promoter, total downregulation of the NX pathway was observed. The results confirmed the role of CarS as a repressor of carotenogenesis in F. fujikuroi and revealed that its expression must be regulated in the wild strain to allow appropriate NX biosynthesis in response to illumination.


2002 ◽  
Vol 184 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Thomas M. A. Gronewold ◽  
Dale Kaiser

ABSTRACT Cell-bound C-signal guides the building of a fruiting body and triggers the differentiation of myxospores. Earlier work has shown that transcription of the csgA gene, which encodes the C-signal, is directed by four genes of the act operon. To see how expression of the genes encoding components of the aggregation and sporulation processes depends on C-signaling, mutants with loss-of-function mutations in each of the act genes were investigated. These mutations were found to have no effect on genes that are normally expressed up to 3 h into development and are C-signal independent. Neither the time of first expression nor the rate of expression increase was changed in actA, actB, actC, or actD mutant strains. Also, there was no effect on A-signal production, which normally starts before 3 h. By contrast, the null act mutants have striking defects in C-signal production. These mutations changed the expression of four gene reporters that are related to aggregation and sporulation and are expressed at 6 h or later in development. The actA and actB null mutations substantially decreased the expression of all these reporters. The other act null mutations caused either premature expression to wild-type levels (actC) or delayed expression (actD), which ultimately rose to wild-type levels. The pattern of effects on these reporters shows how the C-signal differentially regulates the steps that together build a fruiting body and differentiate spores within it.


2009 ◽  
Vol 20 (13) ◽  
pp. 3055-3063 ◽  
Author(s):  
Raqual Bower ◽  
Kristyn VanderWaal ◽  
Eileen O'Toole ◽  
Laura Fox ◽  
Catherine Perrone ◽  
...  

To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.


2000 ◽  
Vol 182 (19) ◽  
pp. 5479-5485 ◽  
Author(s):  
Helena I. M. Boshoff ◽  
Valerie Mizrahi

ABSTRACT A pyrazinamidase (PZase)-deficient pncA mutant ofMycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 μg/ml), in accordance with the well-established role ofpncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662–667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809–5814, 1998) or the M. tuberculosis pncA gene into the pncAmutant complemented its PZase/nicotinamidase defect. In bothpzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. ThepzaA-complemented strain was hypersensitive to PZA (MIC, ≤10 μg/ml) and nicotinamide (MIC, ≥20 μg/ml) and was also sensitive to benzamide (MIC, 20 μg/ml), unlike the wild-type andpncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 μg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 μg/ml in all cases) and rendered Escherichia colihypersensitive for growth at low pH.


1999 ◽  
Vol 181 (23) ◽  
pp. 7291-7297 ◽  
Author(s):  
Anne Breüner ◽  
Lone Brøndsted ◽  
Karin Hammer

ABSTRACT In this work, the phage-encoded proteins involved in site-specific excision of the prophage genome of the temperate lactococcal bacteriophage TP901-1 were identified. The phage integrase is required for the process, and a low but significant frequency of excision is observed when the integrase is the only phage protein present. However, 100% excision is observed when the phage protein Orf7 is provided as well as the integrase. Thus, Orf7 is the TP901-1 excisionase, and it is the first excisionase identified that is used during excisive recombination catalyzed by an integrase belonging to the family of extended resolvases. Orf7 is a basic protein of 64 amino acids, and the corresponding gene (orf7) is the third gene in the early lytic operon. This location of an excisionase gene of a temperate bacteriophage has never been described before. The experiments are based on in vivo excision of specifically designed excision vectors carrying the TP901-1 attP site which are integrated intoattB on the chromosome of Lactococcus lactis. Excision of the vectors was investigated in the presence of different TP901-1 genes. In order to detect very low frequencies of excision, a method for positive selection of loss of genetic material based upon the upp gene (encoding uracil phosphoribosyltransferase) was designed, since upp mutants are resistant to fluorouracil. By using this system, frequencies of excision on the order of 10−5 per cell could easily be measured. The described selection principle may be of general use for many organisms and also for types of deletion events other than excision.


2004 ◽  
Vol 54 (4) ◽  
pp. 1393-1399 ◽  
Author(s):  
Bożena Korczak ◽  
Henrik Christensen ◽  
Stefan Emler ◽  
Joachim Frey ◽  
Peter Kuhnert

Sequences of the gene encoding the β-subunit of the RNA polymerase (rpoB) were used to delineate the phylogeny of the family Pasteurellaceae. A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal rpoB-derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the rpoB gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the rpoB sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the rpoB phylogeny was in better agreement with DNA–DNA hybridization studies than the phylogeny derived from 16S rDNA. The rpoB gene is strongly conserved within the various species of the family of Pasteurellaceae. Hence, rpoB gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the Pasteurellaceae and may also prove useful for reorganizing the current taxonomy of this bacterial family.


Sign in / Sign up

Export Citation Format

Share Document