scholarly journals Isolation and Characterization of rpoS from a Pathogenic Bacterium, Vibrio vulnificus: Role of σS in Survival of Exponential-Phase Cells under Oxidative Stress

2004 ◽  
Vol 186 (11) ◽  
pp. 3304-3312 ◽  
Author(s):  
Kyung-Je Park ◽  
Min-Jin Kang ◽  
Songhee H. Kim ◽  
Hyun-Jung Lee ◽  
Jae-Kyu Lim ◽  
...  

ABSTRACT A gene homologous to rpoS was cloned from a fatal human pathogen, Vibrio vulnificus. The functional role of rpoS in V. vulnificus was accessed by using an rpoS knockout mutant strain. This mutant was impaired in terms of the ability to survive under oxidative stress, nutrient starvation, UV irradiation, or acidic conditions. The increased susceptibility of the V. vulnificus mutant in the exponential phase to H2O2 was attributed to the reduced activity of hydroperoxidase I (HPI). Although σS synthesis was induced and HPI activity reached the maximal level in the stationary phase, the mutant in the stationary phase showed the same susceptibility to H2O2 as the wild-type strain in the stationary phase. In addition, HPII activity, which is known to be controlled by σS in Escherichia coli, was not detectable in V. vulnificus strains under the conditions tested. The mutant in the exponential phase complemented with multiple copies of either the rpoS or katG gene of V. vulnificus recovered both resistance to H2O2 and HPI activity compared with the control strain. Expression of the katG gene encoding HPI in V. vulnificus was monitored by using a katG::luxAB transcriptional fusion. The expression of this gene was significantly reduced by deletion of σS in both the early exponential and late stationary phases. Thus, σS is necessary for increased synthesis and activity of HPI, and σS is required for exponentially growing V. vulnificus to develop the ability to survive in the presence of H2O2.

1972 ◽  
Vol 129 (2) ◽  
pp. 291-299 ◽  
Author(s):  
K. A. Abraham ◽  
K. J. Andersen ◽  
A. Rognes

1. RNA polymerase activity of Escherichia coli extracts prepared from cells in exponential and stationary phases of growth, when measured in the presence and absence of external template, showed significant qualitative differences. 2. In both extracts, polymerase activity was higher when assayed with external template, suggesting the presence of a pool of enzyme not bound to cellular DNA. 3. In the crude extract, the fraction of enzyme bound to cellular DNA is higher during the exponential phase of growth. 4. A method is described for the purification of enzyme molecules not tightly bound to cellular DNA from exponential- and stationary-phase cultures. 5. Purified enzyme preparations showed differences in template requirement and subunit composition. 6. On phosphocellulose chromatography of stationary-phase enzyme, a major portion of polymerase activity eluted from the column with 0.25m-KCl. In the case of exponential-phase enzyme, polymerase activity eluted from a phosphocellulose column mainly with 0.35m-KCl. 7. Enzyme assays done with excess of bacteriophage T4 DNA showed a strong inhibition of stationary-phase enzyme by this template. The exponential-phase enzyme was only slightly inhibited by excess of bacteriophage T4 DNA.


2018 ◽  
Vol 115 (23) ◽  
pp. E5353-E5362 ◽  
Author(s):  
Aline Tabib-Salazar ◽  
Bing Liu ◽  
Declan Barker ◽  
Lynn Burchell ◽  
Udi Qimron ◽  
...  

T7 development inEscherichia colirequires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ70, by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit EσS, the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growingE. colias a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development inE. colicells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 956
Author(s):  
Abdulwahab Antar ◽  
Mi-Ae Lee ◽  
Youngchul Yoo ◽  
Man-Ho Cho ◽  
Sang-Won Lee

Xanthomonas oryzae pv. oryzae (Xoo), a causal agent of bacterial leaf blight of rice, possesses two-component regulatory systems (TCSs) as an intracellular signaling pathway. In this study, we observed changes in virulence, biofilm formation, motility, chemotaxis, and tolerance against oxidative stress of a knockout mutant strain for the PXO_RS20535 gene, encoding an orphan response regulator (RR). The mutant strain lost virulence, produced significantly less biofilm, and showed remarkably reduced motility in swimming, swarming, and twitching. Furthermore, the mutant strain lost glucose-guided movement and showed clear diminution of growth and survival in the presence of H2O2. These results indicate that the RR protein encoded in the PXO_RS20535 gene (or a TCS mediated by the protein) is closely involved in regulation of biofilm formation, all types of motility, chemotaxis, and tolerance against reactive oxygen species (ROS) in Xoo. Moreover we found that the expression of most genes required for a type six secretion system (T6SS) was decreased in the mutant, suggesting that lack of the RR gene most likely leads to defect of T6SS in Xoo.


2004 ◽  
Vol 72 (5) ◽  
pp. 2468-2476 ◽  
Author(s):  
Michael A. Bachman ◽  
Michele S. Swanson

ABSTRACT The opportunistic pathogen Legionella pneumophila alternates between two states: replication within phagocytes and transmission between host amoebae or macrophages. In broth cultures that model this life cycle, during the replication period, CsrA inhibits expression of transmission traits. When nutrients become limiting, the alarmone (p)ppGpp accumulates and the sigma factors RpoS and FliA and the positive activators LetA/S and LetE promote differentiation to the transmissible form. Here we show that when cells enter the postexponential growth phase, RpoS increases expression of the transmission genes fliA, flaA, and mip, factors L. pneumophila needs to establish a new replication niche. In contrast, in exponential (E)-phase cells whose (p)ppGpp levels are low, rpoS inhibits expression of transmission traits, on the basis of three separate observations. First, rpoS RNA levels peak in the E phase, suggestive of a role for RpoS during replication. Second, in multiple copies, rpoS decreases the amounts of csrA, letE, fliA, and flaA transcripts and inhibits the transmission traits of motility, infectivity, and cytotoxicity. Third, rpoS blocks expression of cytotoxicity and motility by E-phase bacteria that have been induced to express the LetA activator ectopically. The data are discussed in the context of a model in which the alarmone (p)ppGpp enables RpoS to outcompete other sigma factors for binding to RNA polymerase to promote transcription of transmission genes, while LetA/S acts in parallel to relieve CsrA posttranscriptional repression of the transmission regulon. By coupling transcriptional and posttranscriptional control pathways, intracellular L. pneumophila could respond to stress by rapidly differentiating to a transmissible form.


2010 ◽  
Vol 76 (11) ◽  
pp. 3732-3739 ◽  
Author(s):  
Yosuke Tashiro ◽  
Sosaku Ichikawa ◽  
Motoyuki Shimizu ◽  
Masanori Toyofuku ◽  
Naoki Takaya ◽  
...  

ABSTRACT Pseudomonas aeruginosa and other Gram-negative bacteria release membrane vesicles (MVs) from their surfaces, and MVs have an ability to interact with bacterial cells. Although it has been known that many bacteria have mechanisms that control their phenotypes with the transition from exponential phase to stationary phase, changes of properties in released MVs have been poorly understood. Here, we demonstrate that MVs released by P. aeruginosa during the exponential and stationary phases possess different physiochemical properties. MVs purified from the stationary phase had higher buoyant densities than did those purified from the exponential phase. Surface charge, characterized by zeta potential, of MVs tended to be more negative as the growth shifted to the stationary phase, although the charges of PAO1 cells were not altered. Pseudomonas quinolone signal (PQS), one of the regulators related to MV production in P. aeruginosa, was lower in MVs purified from the exponential phase than in those from the stationary phase. MVs from the stationary phase more strongly associated with P. aeruginosa cells than did those from the exponential phase. Our findings suggest that properties of MVs are altered to readily interact with bacterial cells along with the growth transition in P. aeruginosa.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


2014 ◽  
Vol 58 (10) ◽  
pp. 5964-5975 ◽  
Author(s):  
Jing-Hung Wang ◽  
Rachna Singh ◽  
Michael Benoit ◽  
Mimi Keyhan ◽  
Matthew Sylvester ◽  
...  

ABSTRACTStationary-phase bacteria are important in disease. The σs-regulated general stress response helps them become resistant to disinfectants, but the role of σsin bacterial antibiotic resistance has not been elucidated. Loss of σsrendered stationary-phaseEscherichia colimore sensitive to the bactericidal antibiotic gentamicin (Gm), and proteomic analysis suggested involvement of a weakened antioxidant defense. Use of the psfiAgenetic reporter, 3′-(p-hydroxyphenyl) fluorescein (HPF) dye, and Amplex Red showed that Gm generated more reactive oxygen species (ROS) in the mutant. HPF measurements can be distorted by cell elongation, but Gm did not affect stationary-phase cell dimensions. Coadministration of the antioxidantN-acetyl cysteine (NAC) decreased drug lethality particularly in the mutant, as did Gm treatment under anaerobic conditions that prevent ROS formation. Greater oxidative stress, due to insufficient quenching of endogenous ROS and/or respiration-linked electron leakage, therefore contributed to the greater sensitivity of the mutant; infection by a uropathogenic strain in mice showed this to be the case alsoin vivo. Disruption of antioxidant defense by eliminating the quencher proteins, SodA/SodB and KatE/SodA, or the pentose phosphate pathway proteins, Zwf/Gnd and TalA, which provide NADPH for ROS decomposition, also generated greater oxidative stress and killing by Gm. Thus, besides its established mode of action, Gm also kills stationary-phase bacteria by generating oxidative stress, and targeting the antioxidant defense ofE. colican enhance its efficacy. Relevant aspects of the current controversy on the role of ROS in killing by bactericidal drugs of exponential-phase bacteria, which represent a different physiological state, are discussed.


2007 ◽  
Vol 75 (4) ◽  
pp. 1609-1618 ◽  
Author(s):  
Dhammika H. M. L. P. Navarathna ◽  
Jacob M. Hornby ◽  
Navasona Krishnan ◽  
Anne Parkhurst ◽  
Gerald E. Duhamel ◽  
...  

ABSTRACTThis work extends our previous observation that the fungusCandida albicanssecretes micromolar levels of farnesol and that accumulation of farnesol in vitro prevents the yeast-to-mycelium conversion in a quorum-sensing manner. What does farnesol do in vivo? The purpose of this study was to determine the role of farnesol during infection with a well-established mouse model of systemic candidiasis withC. albicansA72 administered by tail vein injection. This question was addressed by altering both endogenous and exogenous farnesol. For endogenous farnesol, we created a knockout mutation inDPP3, the gene encoding a phosphatase which converts farnesyl pyrophosphate to farnesol. This mutant (KWN2) produced six times less farnesol and was ca. 4.2 times less pathogenic than its SN152 parent. The strain withDPP3reconstituted (KWN4) regained both its farnesol production levels and pathogenicity. These mutants (KWN1 to KWN4) retained their full dimorphic capability. With regard to exogenous farnesol, farnesol was administered either intraperitoneally (i.p.) or orally in the drinking water. Mice receivingC. albicansintravenously and farnesol (20 mM) orally had enhanced mortality (P< 0.03). Similarly, mice (n= 40) injected with 1.0 ml of 20 mM farnesol i.p. had enhanced mortality (P< 0.03), and the onset of mortality was 30 h sooner than for mice which received a control injection without farnesol. The effect of i.p. farnesol was more pronounced (P< 0.04) when mice were inoculated with a sublethal dose ofC. albicans. These mice started to die 4 days earlier, and the percent survival on day 6 postinoculation (p.i.) was five times lower than for mice receivingC. albicanswith control i.p. injections. In all experiments, mice administered farnesol alone or Tween 80 alone remained normal throughout a 14-day observation period. Finally, beginning at 12 h p.i., higher numbers ofC. albicanscells were detected in kidneys from mice receiving i.p. farnesol than in those from mice receiving control i.p. injections. Thus, reduced endogenous farnesol decreased virulence, while providing exogenous farnesol increased virulence. Taken together, these data suggest that farnesol may play a role in disease pathogenesis, either directly or indirectly, and thus may represent a newly identified virulence factor.


Sign in / Sign up

Export Citation Format

Share Document