scholarly journals Genomic Changes Arising in Long-Term Stab Cultures of Escherichia coli

2004 ◽  
Vol 186 (19) ◽  
pp. 6437-6442 ◽  
Author(s):  
D. Faure ◽  
R. Frederick ◽  
D. Włoch ◽  
P. Portier ◽  
M. Blot ◽  
...  

ABSTRACT Genomic scans of clones isolated from long-term stab cultures of Escherichia coli K-12 showed the loss of two large segments of the genome, with each lost segment being approximately 20 kb long. A detailed analysis of one of the deletions, located between 5.4 and 5.9 min, revealed that similar deletions had arisen in several other stab cultures. All deletions of this type exhibited a right terminus ending precisely at an IS5A element and a left terminus that varied over an ∼5-kb range but was bordered in all but two cases by sequences belonging to the preferred consensus target sequence for IS5, YTAR. The ubiquity of such deletions in independent stab cultures and the increase in their frequency over time argue that they have a selective advantage. It is speculated that the loss of the crl locus is responsible for the selective advantage of the deletions.

2019 ◽  
Vol 2019 (1) ◽  
pp. 169-180
Author(s):  
Joseph L Graves ◽  
Akamu J Ewunkem ◽  
Jason Ward ◽  
Constance Staley ◽  
Misty D Thomas ◽  
...  

Abstract Background and Objectives Metallic antimicrobial materials are of growing interest due to their potential to control pathogenic and multidrug-resistant bacteria. Yet we do not know if utilizing these materials can lead to genetic adaptations that produce even more dangerous bacterial varieties. Methodology Here we utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance. Results By day 10 of evolution, increased gallium resistance was evident in populations cultured in medium containing a sublethal concentration of gallium. Furthermore, these populations showed increased resistance to ionic silver and iron (III), but not iron (II) and no increase in traditional antibiotic resistance compared with controls and the ancestral strain. In contrast, the control populations showed increased resistance to rifampicin relative to the gallium-resistant and ancestral population. Genomic analysis identified hard selective sweeps of mutations in several genes in the gallium (III)-resistant lines including: fecA (iron citrate outer membrane transporter), insl1 (IS30 tranposase) one intergenic mutations arsC →/→ yhiS; (arsenate reductase/pseudogene) and in one pseudogene yedN ←; (iapH/yopM family). Two additional significant intergenic polymorphisms were found at frequencies > 0.500 in fepD ←/→ entS (iron-enterobactin transporter subunit/enterobactin exporter, iron-regulated) and yfgF ←/→ yfgG (cyclic-di-GMP phosphodiesterase, anaerobic/uncharacterized protein). The control populations displayed mutations in the rpoB gene, a gene associated with rifampicin resistance. Conclusions This study corroborates recent results observed in experiments utilizing pathogenic Pseudomonas strains that also showed that Gram-negative bacteria can rapidly evolve resistance to an atom that mimics an essential micronutrient and shows the pleiotropic consequences associated with this adaptation. Lay summary We utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vinardas Kelpšas ◽  
Claes von Wachenfeldt

AbstractDeuterium isotope labelling is important for structural biology methods such as neutron protein crystallography, nuclear magnetic resonance and small angle neutron scattering studies of proteins. Deuterium is a natural low abundance stable hydrogen isotope that in high concentrations negatively affect growth of cells. The generation time for Escherichia coli K-12 in deuterated medium is substantially increased compared to cells grown in hydrogenated (protiated) medium. By using a mutagenesis plasmid based approach we have isolated an E. coli strain derived from E. coli K-12 substrain MG1655 that show increased fitness in deuterium based growth media, without general adaptation to media components. By whole-genome sequencing we identified the genomic changes in the obtained strain and show that it can be used for recombinant production of perdeuterated proteins in amounts typically needed for structural biology studies.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


2009 ◽  
Vol 75 (6) ◽  
pp. 1723-1733 ◽  
Author(s):  
Claire Perrin ◽  
Romain Briandet ◽  
Gregory Jubelin ◽  
Philippe Lejeune ◽  
Marie-Andrée Mandrand-Berthelot ◽  
...  

ABSTRACT The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.


2020 ◽  
Author(s):  
Amy Switzer ◽  
Lynn Burchell ◽  
Josh McQuail ◽  
Sivaramesh Wigneshweraraj

ABSTRACTBacteria initially respond to nutrient starvation by eliciting large-scale transcriptional changes. The accompanying changes in gene expression and metabolism allow the bacterial cells to effectively adapt to the nutrient starved state. How the transcriptome subsequently changes as nutrient starvation ensues is not well understood. We used nitrogen (N) starvation as a model nutrient starvation condition to study the transcriptional changes in Escherichia coli experiencing long-term N starvation. The results reveal that the transcriptome of N starved E. coli undergoes changes that are required to maximise chances of viability and to effectively recover growth when N starvation conditions become alleviated. We further reveal that, over time, N starved E. coli cells rely on the degradation of allantoin for optimal growth recovery when N becomes replenished. This study provides insights into the temporally coordinated adaptive responses that occur in E. coli experiencing sustained N starvation.IMPORTANCEBacteria in their natural environments seldom encounter conditions that support continuous growth. Hence, many bacteria spend the majority of their time in states of little or no growth due to starvation of essential nutrients. To cope with prolonged periods of nutrient starvation, bacteria have evolved several strategies, primarily manifesting themselves through changes in how the information in their genes is accessed. How these coping strategies change over time under nutrient starvation is not well understood and this knowledge is not only important to broaden our understanding of bacterial cell function, but also to potentially find ways to manage harmful bacteria. This study provides insights into how nitrogen starved Escherichia coli bacteria rely on different genes during long term nitrogen starvation.


1967 ◽  
Vol 45 (1) ◽  
pp. 1-10 ◽  
Author(s):  
I. D. Desai ◽  
W. J. Polglase

The relation between threonine deaminase activity and threonine concentration in sonic extracts of wild-type and streptomycin-dependent Escherichia coli K-12 was found to follow a hyperbolic curve. A similar relationship was obtained between enzyme activity and pyridoxal concentration. However, when serine was used as substrate, the activity–concentration curve was sigmoid, suggesting that serine may be a weaker effector of allosteric transition than threonine. The kinetic properties of the (derepressed) threonine deaminase of streptomycin-dependent E. coli K-12 were found to be similar to those of the enzyme of the wild-type K-12.It is postulated that derepression of threonine deaminase in streptomycin-dependent E. coli K-12 provides a selective advantage which permits exponential growth of this mutant in the presence of L-valine, which is an excretory product of streptomycin-dependent microorganisms.


2015 ◽  
Vol 83 (5) ◽  
pp. 1983-1991 ◽  
Author(s):  
Silvia A. C. Schinner ◽  
Matthew E. Mokszycki ◽  
Jimmy Adediran ◽  
Mary Leatham-Jensen ◽  
Tyrrell Conway ◽  
...  

Escherichia coliMG1655, a K-12 strain, uses glycolytic nutrients exclusively to colonize the intestines of streptomycin-treated mice when it is the onlyE. colistrain present or when it is confronted withE. coliEDL933, an O157:H7 strain. In contrast,E. coliEDL933 uses glycolytic nutrients exclusively when it is the onlyE. colistrain in the intestine but switches in part to gluconeogenic nutrients when it colonizes mice precolonized withE. coliMG1655 (R. L. Miranda et al., Infect Immun 72:1666–1676, 2004,http://dx.doi.org/10.1128/IAI.72.3.1666-1676.2004). Recently, J. W. Njoroge et al. (mBio 3:e00280-12, 2012,http://dx.doi.org/10.1128/mBio.00280-12) reported thatE. coli86-24, an O157:H7 strain, activates the expression of virulence genes under gluconeogenic conditions, suggesting that colonization of the intestine with a probioticE. colistrain that outcompetes O157:H7 strains for gluconeogenic nutrients could render them nonpathogenic. Here we report thatE. coliNissle 1917, a probiotic strain, uses both glycolytic and gluconeogenic nutrients to colonize the mouse intestine between 1 and 5 days postfeeding, appears to stop using gluconeogenic nutrients thereafter in a large, long-term colonization niche, but continues to use them in a smaller niche to compete with invadingE. coliEDL933. Evidence is also presented suggesting that invadingE. coliEDL933 uses both glycolytic and gluconeogenic nutrients and needs the ability to perform gluconeogenesis in order to colonize mice precolonized withE. coliNissle 1917. The data presented here therefore rule out the possibility thatE. coliNissle 1917 can starve the O157:H7E. colistrain EDL933 of gluconeogenic nutrients, even thoughE. coliNissle 1917 uses such nutrients to compete withE. coliEDL933 in the mouse intestine.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Michael Pietsch ◽  
Yvonne Pfeifer ◽  
Stephan Fuchs ◽  
Guido Werner

(1) Background: Resistance plasmids are under selective conditions beneficial for the bacterial host, but in the absence of selective pressure, this carriage may cause fitness costs. Compensation of this fitness burden is important to obtain competitive ability under antibiotic-free conditions. In this study, we investigated fitness effects after a conjugative transfer of plasmids containing various beta-lactamase genes transferred into Escherichia coli. (2) Methods: Fourteen beta-lactamase-encoding plasmids were transferred from clinical donor strains to E. coli J53. Growth rates were compared for all transconjugants and the recipient. Selected transconjugants were challenged in long-term growth experiments. Growth rates were assessed at different time points during growth for 500 generations. Whole-genome sequencing (WGS) of initial and evolved transconjugants was determined. Results: Most plasmid acquisitions resulted in growth differences, ranging from −4.5% to 7.2%. Transfer of a single blaCMY-16-carrying plasmid resulted in a growth burden and a growth benefit in independent mating. Long-term growth led to a compensation of fitness burdens and benefits. Analyzing WGS revealed genomic changes caused by Single Nucleotide Polymorphisms (SNPs) and insertion sequences over time. Conclusions: Fitness effects associated with plasmid acquisitions were variable. Potential compensatory mutations identified in transconjugants’ genomes after 500 generations give interesting insights into aspects of plasmid–host adaptations.


2003 ◽  
Vol 69 (11) ◽  
pp. 6605-6609 ◽  
Author(s):  
Gina L. Koenig

ABSTRACT The long-term viability and plasmid retention of recombinant Escherichia coli strains were investigated by real-time testing of master cell banks (MCBs) stored at the Roche Molecular Systems Culture Collection (RMSCC). MCBs at the RMSCC were cryogenically frozen and stored at −80°C for long-term preservation. At regular intervals during a period of 5 to more than 10 years, representative cryovials of each MCB were tested for viability and plasmid retention. Plasmid retention and viability for all 30 MCBs were stable over time. Twenty-seven MCBs maintained high levels of plasmid retention (at or near 100%), while three MCBs showed lower plasmid retention rates (ranging from 13.9 to 96.5%) that were consistent over time. New MCBs with high plasmid retention were created from two of the MCBs with lower plasmid retention by selective pressure with high levels of antibiotics. These new MCBs have shown stable viability and high plasmid retention over the first 5 months of storage. In conclusion, this study shows that properly selected, frozen and stored MCBs retain viability and maintain plasmid retention over time. Moreover, it is possible to recover cultures with high plasmid retention from MCBs with low plasmid retention by selecting clones grown in the presence of high levels of antibiotics.


2007 ◽  
Vol 75 (7) ◽  
pp. 3233-3244 ◽  
Author(s):  
Glen C. Ulett ◽  
Jaione Valle ◽  
Christophe Beloin ◽  
Orla Sherlock ◽  
Jean-Marc Ghigo ◽  
...  

ABSTRACT Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with the virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter subgroup of proteins. The best characterized of these proteins, antigen 43 (Ag43), is a self-recognizing adhesin that is associated with cell aggregation and biofilm formation in E. coli K-12. The sequenced genome of prototype UPEC strain CFT073 contains two variant Ag43-encoding genes located on pathogenicity islands. The biological significance of both of these genes and their role in UPEC pathogenesis have not been investigated previously. Here we performed a detailed molecular characterization analysis of Ag43a (c3655) and Ag43b (c1273) from UPEC CFT073. Expression of Ag43a and Ag43b in a K-12 background revealed that they possess different functional properties. Ag43a produced a strong aggregation phenotype and promoted significant biofilm growth. Deletion mutants and strains constitutively expressing Ag43a and Ag43b were also constructed using CFT073. When these mutants were analyzed in a mouse model of UTI, Ag43a (but not Ag43b) promoted long-term persistence in the urinary bladder. Our findings demonstrate that Ag43a contributes to UPEC disease pathogenesis and reveal that there are pathogenicity-adapted variants of Ag43 with distinct virulence-related functions.


Sign in / Sign up

Export Citation Format

Share Document