scholarly journals Contribution of the Mismatch DNA Repair System to the Generation of Stationary-Phase-Induced Mutants of Bacillus subtilis

2004 ◽  
Vol 186 (19) ◽  
pp. 6485-6491 ◽  
Author(s):  
Mario Pedraza-Reyes ◽  
Ronald E. Yasbin

ABSTRACT A reversion assay system previously implemented to demonstrate the existence of adaptive or stationary-phase-induced mutagenesis in Bacillus subtilis was utilized in this report to study the influence of the mismatch DNA repair (MMR) system on this type of mutagenesis. Results revealed that a strain deficient in MutSL showed a significant propensity to generate increased numbers of stationary-phase-induced revertants. These results suggest that absence or depression of MMR is an important factor in the mutagenesis of nongrowing B. subtilis cells because of the role of MMR in repairing DNA damage. In agreement with this suggestion, a significant decrease in the number of adaptive revertant colonies, for the three markers tested, occurred in B. subtilis cells which overexpressed a component of the MMR system. Interestingly, the single overexpression of mutS, but not of mutL, was sufficient to decrease the level of adaptive mutants in the reversion assay system of B. subtilis. The results presented in this work, as well as in our previous studies, appear to suggest that an MMR deficiency, putatively attributable to inactivation or saturation with DNA damage of MutS, may occur in a subset of B. subtilis cells that differentiate into the hypermutable state.

2021 ◽  
Author(s):  
Marisol Giustozzi ◽  
Santiago Freytes ◽  
Aime Jaskolowski ◽  
Micaela Lichy ◽  
Julieta L. Mateos ◽  
...  

Mediator 17 (MED17) is a subunit of the Mediator complex that regulates transcription initiation in eukaryotic organisms. In yeast and humans, MED17 also participates in DNA repair, physically interacting with proteins of the Nucleotide Excision DNA Repair system. We here analyzed the role of MED17 in Arabidopsis plants exposed to UV-B radiation, which role has not been previously described. Comparison of med17 mutant transcriptome to that of WT plants showed that almost one third of transcripts with altered expression in med17 plants are also changed by UV-B exposure in WT plants. To validate the role of MED17 in UV-B irradiated plants, plant responses to UV-B were analyzed, including flowering time, DNA damage accumulation and programmed cell death in the meristematic cells of the root tips. Our results show that med17 and OE MED17 plants have altered responses to UV-B; and that MED17 participates in various aspects of the DNA damage response (DDR). Increased sensitivity to DDR after UV-B in med17 plants can be due to altered regulation of UV-B responsive transcripts; but additionally MED17 physically interacts with DNA repair proteins, suggesting a direct role of this Mediator subunit during repair. Finally, we here also show that MED17 is necessary to regulate the DDR activated by ATR, and that PDCD5 overexpression reverts the deficiencies in DDR shown in med17 mutants. Together, the data presented demonstrates that MED17 is an important regulator of the DDR after UV-B radiation in Arabidopsis plants.


2008 ◽  
Vol 191 (2) ◽  
pp. 506-513 ◽  
Author(s):  
Luz E. Vidales ◽  
Lluvia C. Cárdenas ◽  
Eduardo Robleto ◽  
Ronald E. Yasbin ◽  
Mario Pedraza-Reyes

ABSTRACT Previous studies showed that a Bacillus subtilis strain deficient in mismatch repair (MMR; encoded by the mutSL operon) promoted the production of stationary-phase-induced mutations. However, overexpression of the mutSL operon did not completely suppress this process, suggesting that additional DNA repair mechanisms are involved in the generation of stationary-phase-associated mutants in this bacterium. In agreement with this hypothesis, the results presented in this work revealed that starved B. subtilis cells lacking a functional error prevention GO (8-oxo-G) system (composed of YtkD, MutM, and YfhQ) had a dramatic propensity to increase the number of stationary-phase-induced revertants. These results strongly suggest that the occurrence of mutations is exacerbated by reactive oxygen species in nondividing cells of B. subtilis having an inactive GO system. Interestingly, overexpression of the MMR system significantly diminished the accumulation of mutations in cells deficient in the GO repair system during stationary phase. These results suggest that the MMR system plays a general role in correcting base mispairing induced by oxidative stress during stationary phase. Thus, the absence or depression of both the MMR and GO systems contributes to the production of stationary-phase mutants in B. subtilis. In conclusion, our results support the idea that oxidative stress is a mechanism that generates genetic diversity in starved cells of B. subtilis, promoting stationary-phase-induced mutagenesis in this soil microorganism.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6029 ◽  
Author(s):  
Caroline Zutterling ◽  
Aibek Mursalimov ◽  
Ibtissam Talhaoui ◽  
Zhanat Koshenov ◽  
Zhiger Akishev ◽  
...  

Background DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2′-deoxyguanosine-5′-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. Methods Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproduct (6–4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. Results We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6–4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. Discussion These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.


2015 ◽  
Vol 197 (11) ◽  
pp. 1963-1971 ◽  
Author(s):  
Martha Gómez-Marroquín ◽  
Luz E. Vidales ◽  
Bernardo N. Debora ◽  
Fernando Santos-Escobar ◽  
Armando Obregón-Herrera ◽  
...  

ABSTRACTReactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that inBacillus subtilis,mutMis expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells ofB. subtilislacking MutM increased their spontaneous mutation frequency to Rifrand were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1′-dimethyl-4,4′-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression ofmutMwas not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σBregulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strainB. subtilisYB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, amutMknockout strain significantly increased the amount of stationary-phase-associatedhis,met, andleurevertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressedB. subtiliscells to escape from growth-limiting conditions.IMPORTANCEThe present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacteriumBacillus subtilisfrom the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation ofmutMallows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1375-1387
Author(s):  
Emmanuelle M D Martini ◽  
Scott Keeney ◽  
Mary Ann Osley

Abstract To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Δ and rad52Δ mutants but not in rad6Δ or rad18Δ mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Δ) or error-free (rad30Δ) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Δ mutation. When combined with a ubc13Δ mutation, which is also epistatic with rad5Δ, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Wasim Feroz ◽  
Arwah Mohammad Ali Sheikh

Abstract Background Cells have evolved balanced mechanisms to protect themselves by initiating a specific response to a variety of stress. The TP53 gene, encoding P53 protein, is one of the many widely studied genes in human cells owing to its multifaceted functions and complex dynamics. The tumour-suppressing activity of P53 plays a principal role in the cellular response to stress. The majority of the human cancer cells exhibit the inactivation of the P53 pathway. In this review, we discuss the recent advancements in P53 research with particular focus on the role of P53 in DNA damage responses, apoptosis, autophagy, and cellular metabolism. We also discussed important P53-reactivation strategies that can play a crucial role in cancer therapy and the role of P53 in various diseases. Main body We used electronic databases like PubMed and Google Scholar for literature search. In response to a variety of cellular stress such as genotoxic stress, ischemic stress, oncogenic expression, P53 acts as a sensor, and suppresses tumour development by promoting cell death or permanent inhibition of cell proliferation. It controls several genes that play a role in the arrest of the cell cycle, cellular senescence, DNA repair system, and apoptosis. P53 plays a crucial role in supporting DNA repair by arresting the cell cycle to purchase time for the repair system to restore genome stability. Apoptosis is essential for maintaining tissue homeostasis and tumour suppression. P53 can induce apoptosis in a genetically unstable cell by interacting with many pro-apoptotic and anti-apoptotic factors. Furthermore, P53 can activate autophagy, which also plays a role in tumour suppression. P53 also regulates many metabolic pathways of glucose, lipid, and amino acid metabolism. Thus under mild metabolic stress, P53 contributes to the cell’s ability to adapt to and survive the stress. Conclusion These multiple levels of regulation enable P53 to perform diversified roles in many cell responses. Understanding the complete function of P53 is still a work in progress because of the inherent complexity involved in between P53 and its target proteins. Further research is required to unravel the mystery of this Guardian of the genome “TP53”.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Miaomiao Bai ◽  
Dongdong Ti ◽  
Qian Mei ◽  
Jiejie Liu ◽  
Xin Yan ◽  
...  

The human body is a complex structure of cells, which are exposed to many types of stress. Cells must utilize various mechanisms to protect their DNA from damage caused by metabolic and external sources to maintain genomic integrity and homeostasis and to prevent the development of cancer. DNA damage inevitably occurs regardless of physiological or abnormal conditions. In response to DNA damage, signaling pathways are activated to repair the damaged DNA or to induce cell apoptosis. During the process, posttranslational modifications (PTMs) can be used to modulate enzymatic activities and regulate protein stability, protein localization, and protein-protein interactions. Thus, PTMs in DNA repair should be studied. In this review, we will focus on the current understanding of the phosphorylation, poly(ADP-ribosyl)ation, ubiquitination, SUMOylation, acetylation, and methylation of six typical PTMs and summarize PTMs of the key proteins in DNA repair, providing important insight into the role of PTMs in the maintenance of genome stability and contributing to reveal new and selective therapeutic approaches to target cancers.


2021 ◽  
Author(s):  
Tomoko Tanaka ◽  
Shinobu Hirai ◽  
Hiroyuki Manabe ◽  
Kentaro Endo ◽  
Hiroko Shimbo ◽  
...  

Aging involves a decline in physiology which is a natural event in all living organisms. An accumulation of DNA damage contributes to the progression of aging. DNA is continually damaged by exogenous sources and endogenous sources. If the DNA repair pathway operates normally, DNA damage is not life threatening. However, impairments of the DNA repair pathway may result in an accumulation of DNA damage, which has a harmful effect on health and causes an onset of pathology. RP58, a zinc-finger transcriptional repressor, plays a critical role in cerebral cortex formation. Recently, it has been reported that the expression level of RP58 decreases in the aged human cortex. Furthermore, the role of RP58 in DNA damage is inferred by the involvement of DNMT3, which acts as a co-repressor for RP58, in DNA damage. Therefore, RP58 may play a crucial role in the DNA damage associated with aging. In the present study, we investigated the role of RP58 in aging. We used RP58 hetero-knockout and wild-type mice in adolescence, adulthood, or old age. We performed immunohistochemistry to determine whether microglia and DNA damage markers responded to the decline in RP58 levels. Furthermore, we performed an object location test to measure cognitive function, which decline with age. We found that the wild-type mice showed an increase in single-stranded DNA and gamma-H2AX foci. These results indicate an increase in DNA damage or dysfunction of DNA repair mechanisms in the hippocampus as age-related changes. Furthermore, we found that, with advancing age, both the wild-type and hetero-knockout mice showed an impairment of spatial memory for the object and increase in reactive microglia in the hippocampus. However, the RP58 hetero-knockout mice showed these symptoms earlier than the wild-type mice did. These results suggest that a decline in RP58 level may lead to the progression of aging.


2007 ◽  
Vol 189 (8) ◽  
pp. 3306-3311 ◽  
Author(s):  
Ralf Moeller ◽  
Erko Stackebrandt ◽  
Günther Reitz ◽  
Thomas Berger ◽  
Petra Rettberg ◽  
...  

ABSTRACT The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for repair of DNA double-strand breaks.


Sign in / Sign up

Export Citation Format

Share Document