scholarly journals Selenocysteine-Containing Proteins in Anaerobic Benzoate Metabolism of Desulfococcus multivorans

2004 ◽  
Vol 186 (7) ◽  
pp. 2156-2163 ◽  
Author(s):  
Franziska Peters ◽  
Michael Rother ◽  
Matthias Boll

ABSTRACT The sulfate-reducing bacterium Desulfococcus multivorans uses various aromatic compounds as sources of cell carbon and energy. In this work, we studied the initial steps in the aromatic metabolism of this strictly anaerobic model organism. An ATP-dependent benzoate coenzyme A (CoA) ligase (AMP plus PPi forming) composed of a single 59-kDa subunit was purified from extracts of cells grown on benzoate. Specific activity was highest with benzoate and some benzoate derivatives, whereas aliphatic carboxylic acids were virtually unconverted. The N-terminal amino acid sequence showed high similarities with benzoate CoA ligases from Thauera aromatica and Azoarcus evansii. When cultivated on benzoate, cells strictly required selenium and molybdenum, whereas growth on nonaromatic compounds, such as cyclohexanecarboxylate or lactate, did not depend on the presence of the two trace elements. The growth rate on benzoate was half maximal with 1 nM selenite present in the growth medium. In molybdenum- and/or selenium-depleted cultures, growth on benzoate could be induced by addition of the missing trace elements. In extracts of cells grown on benzoate in the presence of [75Se]selenite, three radioactively labeled proteins with molecular masses of ∼100, 30, and 27 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 100- and 30-kDa selenoproteins were 5- to 10-fold induced in cells grown on benzoate compared to cells grown on lactate. These results suggest that the dearomatization process in D. multivorans is not catalyzed by the ATP-dependent Fe-S enzyme benzoyl-CoA reductase as in facultative anaerobes but rather involves unknown molybdenum- and selenocysteine-containing proteins.

1982 ◽  
Vol 47 (01) ◽  
pp. 014-018 ◽  
Author(s):  
H Sumi ◽  
N Toki ◽  
S Takasugi ◽  
S Maehara ◽  
M Maruyama ◽  
...  

SummaryPapain treatment of human urinary trypsin inhibitor (UTI67; mol. wt. 43,000 by SDS-polyacrylamide gel electrophoresis, specific activity 1,897 U/mg protein) produced four new protease inhibitors, which were highly purified by gel chromatography on Sephadex G-100 and isoelectric focusing. The purified inhibitors (UTI26, UTI9-I, UTI9-II, and UTI9-III) were shown to be homogeneous by polyacrylamide disc gel electrophoresis, and had apparent molecular weights of 26,000, 9,000, 9,000, and 9,800, respectively, by sodium dodecyl sulfate gel electrophoresis. During enzymatic degradation of UTI67, the amino acid compositions changed to more basic, and the isoelectric point increased from pH 2.0 (UTI67) to pHs 4.4, 5.2, 6.6, and 8.3 (UTI26, UTI9-I, UTI9-II, and UTI9-III), respectively. Both the parent and degraded inhibitors had anti-plasmin activity as well as antitrypsin and anti-chymotrypsin activities. Much higher anti-plasmin/anti-trypsin and anti-plasmin/anti-chymotrypsin activities were observed in the degraded inhibitors than in the parent UTI67. They competitively inhibited human plasmin with Ki values of 1.13 X 10-7 - 2.12 X 10-6 M (H-D-Val-Leu-Lys-pNA substrate). The reactions were very fast and the active site of the inhibitors to plasmin was thought to be different from that to trypsin or chymotrypsin.


1990 ◽  
Vol 258 (2) ◽  
pp. C344-C351 ◽  
Author(s):  
H. Schmidt ◽  
G. Wegener

White skeletal muscle of crucian carp contains a single isoenzyme of glycogen phosphorylase, which was purified approximately 300-fold to a specific activity of approximately 13 mumol.min-1.mg protein-1 (assayed in the direction of glycogen breakdown at 25 degrees C). Tissue extracts of crucian muscle produced three distinct peaks of phosphorylase activity when separated on DEAE-Sephacel. Peaks 1 and 3 were identified, in terms of kinetic properties and by interconversion experiments, as phosphorylase b and a, respectively. Peak 2 was shown to be a phospho-dephospho hybrid. The three interconvertible forms of phosphorylase were purified and shown to be dimeric molecules at 20 degrees C. At 5 degrees C, a and the hybrid tended to form tetramers. The Mr of the subunit was estimated to be 96,400 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hybrid is kinetically homogeneous, and its kinetic properties are intermediate between those of b and a forms. The b, hybrid, and a forms of phosphorylase can be isolated from rapidly frozen muscle of crucian but in different proportions, depending on whether fish were anesthetized or forced to muscular activity for 20 s. Muscle of anesthetized crucian had 36, 36, and 28% of phosphorylase b, hybrid, and a forms, respectively, whereas the corresponding values for exercised fish were 12, 37, and 51%. Results suggest that three interconvertible forms of phosphorylase exist simultaneously in crucian muscle and that hybrid phosphorylase is active in contracting muscle in vivo.


1983 ◽  
Vol 213 (1) ◽  
pp. 225-234 ◽  
Author(s):  
N Lambert ◽  
R B Freedman

Protein disulphide-isomerase from bovine liver was purified to homogeneity as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, two-dimensional electrophoresis and N-terminal amino acid analysis. The preparative procedure, a modification of that of Carmichael, Morin & Dixon [(1977) J. Biol. Chem. 252, 7163-7167], is much faster and higher-yielding than previous procedures, and the final purified material is of higher specific activity. The enzyme has Mr 57 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, both in the presence and in the absence of thiol compounds. Gel-filtration studies on Sephadex G-200 indicate an Mr of 107 000, suggesting that the native enzyme is a homodimer with no interchain disulphide bonds. Ultracentrifugation studies give a sedimentation coefficient of 3.5S, implying that the enzyme sediments as the monomer. The isoelectric point, in the presence of 8 M-urea, is 4.2, and some microheterogeneity is detectable. The amino acid composition is comparable with previous analyses of this enzyme from bovine liver and of other preparations of thiol:protein disulphide oxidoreductases whose relation to protein disulphide-isomerase has been controversial. The enzyme contains a very high proportion of Glx + Asx residues (27%). The N-terminal residue is His. The pure enzyme has a very small carbohydrate content, determined as 0.5-1.0% by the phenol/H2SO4 assay. Unless specific steps are taken to remove it, the purified enzyme contains a small amount (5 mol/mol of enzyme) of Triton X-100 carried through the purification.


2009 ◽  
Vol 72 (12) ◽  
pp. 2524-2529 ◽  
Author(s):  
JINLAN ZHANG ◽  
GUORONG LIU ◽  
NAN SHANG ◽  
WANPENG CHENG ◽  
SHANGWU CHEN ◽  
...  

Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1 from the traditional Chinese fermented Xuan-Wei ham, was successfully purified by the pH-mediated cell adsorption-desorption method and then purified by gel chromatography with Sephadex G-10. The purification resulted in a 1,381.9-fold increase in specific activity with a yield of 76.8% of the original activity. Using Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), the molecular mass of the purified peptide was found to be between 3,500 and 6,400 Da, and bacteriocin activity was confirmed by overlayer techniques. When subjected to mass spectrometry analysis, the protein was highly pure and its molecular mass was 5,592.225 Da. The partial N-terminal sequence of pentocin 31-1 was the following: NH2-VIADYGNGVRXATLL. Compared with the sequence of other bacteriocins, pentocin 31-1 has the consensus sequence YGNGV in its N-terminal region, and therefore it belongs to the class IIa of bacteriocins.


1982 ◽  
Vol 203 (1) ◽  
pp. 45-50 ◽  
Author(s):  
P M Ahmad ◽  
D S Feltman ◽  
F Ahmad

A simple procedure was devised which allows purification of rat lactating-mammary-gland fatty acid synthase to a high degree of purity, with recoveries of activity exceeding 50%. Over 50 mg of enzyme was isolated from 60 g of mammary tissue. The specific activity of the purified enzyme was about 2.5 mumol of NADPH oxidized/min per mg of protein at 37 degrees. The enzyme appeared homogeneous by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and by immunodiffusion analysis. Each mol (Mr 480 000) of the enzyme bound 3 mol of acetyl and 3-4 mol of malonyl groups when the binding experiments were performed at 0 degrees for 30 s. The presence of NADPH did not influence the binding stoicheiometry for these acyl-CoA derivatives. Approx. 2 mol of taurine was found per mol of the performic acid-oxidized enzyme, suggesting that there were 2 mol of 4′-phosphopantetheine in the native enzyme. Rat mammary-gland fatty acid synthase required free CoA for activity.


2021 ◽  
Vol 13 (2) ◽  
pp. 107-112
Author(s):  
C.F. Okechukwu ◽  
P.L. Shamsudeen ◽  
R.K. Bala ◽  
B.G. Kurfi ◽  
A.M. Abdulazeez

The most effective and acceptable therapy for snakebite victims is the immediate administration of antivenin which is limited by problems of hypersensitivity reactions in some individuals and its inability to resolve the local effects of the venom. The aim of this study was to isolate, partially purify and characterize phospholipase A2 from Naja Katiensis venom. Phospholipase A2 was partially purified via a two-step process: gel filtration on Sephadex G-75 and ion exchange chromatography using CM Sephadex, and subjected to SDS-PAGE analysis. From the results, the specific activity of the partially purified PLA2 decreased from 0.67μmol/min/mg in crude venom to 0.29μmol/min/mg after ion exchange chromatography with a yield of 5% and purification fold of 0.43. The optimum temperature of the purified PLA2 was found to be 35ºC and optimum p.H of 7. velocity studies for the determination of kinetic constants using L-a-lecithin as substrate revealed a Km  of 1.47mg/ml and Vmax  of 3.32μ moles/min/mg. The sodium dodecyl sulphate polyacrylamide gel electrophoresis of the purified PLA2 showed a distinct band with molecular weight estimated to be 14KDa. In conclusion, the present study shows that phospholipase A2 was isolated, purified and characterized. This may serve as a promising candidate for future development of a novel anti-venin drug.


1973 ◽  
Vol 51 (11) ◽  
pp. 1551-1555 ◽  
Author(s):  
Tony C. M. Seah ◽  
A. R. Bhatti ◽  
J. G. Kaplan

At any stage of growth of a wild-type bakers' yeast, some 20% of the catalatic activity of crude extracts is not precipitable by means of antibody prepared against the typical catalase (catalase T), whose purification and properties have been previously described. Some of this catalatic activity is due to the presence of an atypical catalase (catalase A), a heme protein, with a molecular weight estimated as 170 000 – 190 000, considerably lower than that of the usual catalases (225 000 – 250 000). Preparations of catalase A were found to be homogeneous in the analytical ultracentrifuge and in polyacrylamide gel electrophoresis. Its subunit molecular weight, determined from its iron content, was 46 500, virtually the same as that of the major band obtained in gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the native protein is tetrameric. Its specific activity is in the range of those reported for other typical catalases.


1980 ◽  
Vol 189 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Yoav Ben-Yoseph ◽  
Melinda Hungerford ◽  
Henry L. Nadler

Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.


1982 ◽  
Vol 152 (1) ◽  
pp. 239-245
Author(s):  
R M Berka ◽  
M L Vasil

Phospholipase C (heat-labile hemolysin) was purified from Pseudomonas aeruginosa culture supernatants to near homogeneity by ammonium sulfate precipitation followed by a novel application of DEAE-Sephacel chromatography. Enzymatic activity remained associated with DEAE-Sephacel even in the presence of 1 M NaCl, but was eluted with a linear gradient of 0 to 5% tetradecyltrimethylammonium bromide. Elution from DEAE-Sephacel was also obtained with 2% lysophosphatidylcholine, and to a lesser extent with 2% phosphorylcholine, but not at all with choline. The enzyme was highly active toward phospholipids possessing substituted ammonium groups (e.g., phosphatidycholine, lysophosphatidylcholine, and sphingomyelin); however, it had little if any activity toward phospholipids lacking substituted ammonium groups (e.g., phosphatidylethanolamine, phosphatidylserine, and phosphaditylglycerol). Collectively, these data suggest that phospholipase C from P. aeruginosa exhibits high affinity for substituted ammonium groups, but requires an additional hydrophobic moiety for optimum binding. The specific activity of the purified enzyme preparation increased 1,900-fold compared with that of culture supernatants. The molecular weight of the phospholipase C was estimated to be 78,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephacryl S-200 column chromatography and was 76,000 by high-performance size exclusion chromatography. The isoelectric point was 5.5. Amino acid analysis showed that phospholipase C was rich in glycine, serine, threonine, aspartyl, glutamyl, and aromatic amino acids, but was cystine free.


1982 ◽  
Vol 152 (1) ◽  
pp. 298-305
Author(s):  
P Dehazya ◽  
R S Coles

To study the hemagglutinin of Fusobacterium nucleatum, methods were sought to solubilize and purify this component. When cells of F. nucleatum were ruptured by passage through a French press, the fragments lost virtually all ability to agglutinate human erythrocytes. Extraction of the fragments with 2% Triton X-100 for 30 min at 22 degrees C restored hemagglutinating activity (HA). Hemagglutination by these fragments could be inhibited by arginine, as can hemagglutination by intact bacteria. Treatment of active cell wall fragments with pronase and 2% Triton X-100-EDTA at 37 degrees C or with pronase and 0.1% Triton X-100-EDTA at pH 10.0 allowed recovery of solubilized HA. The former HA was inhibited by arginine (arg+) whereas the latter was not (arg-). Fractionation of the arg+ extract by preparative isoelectric focusing showed that HA was recovered from the gel sections having a pH between 4.5 and 5.5. Hemagglutination by this preparation was still arg+. Chromatography of this hemagglutinin on DEAE-Sephadex increased the specific activity to high levels with a loss of inhibition by arginine. A fraction from the DEAE-Sephadex column containing 10,700 HA units per mg of protein was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Solubilization at 22 degrees C before electrophoresis revealed three Coomassie blue-staining bands which migrated with apparent molecular weights of about 21,000, 38,000 and 60,000. When the same DEAE fraction was boiled in sodium dodecyl sulfate, electrophoresis revealed only one band with an apparent molecular weight of 21,000.


Sign in / Sign up

Export Citation Format

Share Document