scholarly journals Structure, Regulation, and Putative Function of the Arginine Deiminase System of Streptococcus suis

2006 ◽  
Vol 188 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Petra Gruening ◽  
Marcus Fulde ◽  
Peter Valentin-Weigand ◽  
Ralph Goethe

ABSTRACT Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative β-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions.

1998 ◽  
Vol 180 (24) ◽  
pp. 6468-6475 ◽  
Author(s):  
Abdelouahid Maghnouj ◽  
Tiago Franco de Sousa Cabral ◽  
Victor Stalon ◽  
Corinne Vander Wauven

ABSTRACT The arginine deiminase pathway enables Bacillus licheniformis to grow anaerobically on arginine. Both the presence of arginine and anaerobiosis are needed to trigger induction of the pathway. In this study we have cloned and sequenced thearc genes encoding the pathway. They appear clustered in an operon-like structure in the order arcA (arginine deiminase), arcB (ornithine carbamoyltransferase),arcD (putative arginine-ornithine antiporter),arcC (carbamate kinase). It was found that B. licheniformis has an arginine repressor, ArgR, homologous to theB. subtilis arginine repressor AhrC. Mutants affected inargR were isolated. These mutants have lost both repression by arginine of the anabolic ornithine carbamoyltransferase and induction of the arginine deiminase pathway. Electrophoretic band shift experiments and DNase I footprinting revealed that in the presence of arginine, ArgR binds to a site upstream from the arcpromoter. The binding site is centered 108 nucleotides upstream from the transcription start point and contains a single Arg box.


2001 ◽  
Vol 75 (10) ◽  
pp. 4889-4895 ◽  
Author(s):  
Wen-hai Feng ◽  
S. M. Laster ◽  
M. Tompkins ◽  
T. Brown ◽  
J.-S. Xu ◽  
...  

ABSTRACT Porcine reproductive and respiratory syndrome (PRRS) consistently elevates the frequency of disease and mortality in young pigs. Many different secondary bacterial diseases occur in PRRS virus (PRRSV)-infected pigs. However, to date, establishing a reproducible experimental model of PRRSV infection in weaned pigs, with subsequent clinical disease following secondary bacterial challenge, has been difficult. PRRSV is frequently isolated during outbreaks from weak-born piglets affected by secondary bacterial diseases. This study was performed to investigate the potential role of intrauterine PRRSV infection on piglet susceptibility to secondary bacterial infection. PRRSV-free pregnant sows were intranasally infected at 98 days of gestation with PRRSV strain SD 23983. All piglets born to the PRRSV-infected sows were viremic. Piglets were removed from the sows at birth and deprived of colostrum. Piglets from PRRSV-infected and noninfected sows were randomly assigned to Streptococcus suis challenge or control subgroups. At 5 days of age, piglets were challenged intranasally with strain MN 87555 of S. suis type II. Total and differential leukocyte counts were performed on blood samples collected at 3 days of age. The numbers of leukocytes, lymphocytes, and monocytes were significantly reduced in the PRRSV-infected piglets. Lesions were observed in bone marrow, brain, lung, heart, spleen, lymph node, tonsil, and thymus of PRRSV-infected piglets. Thymus/body weight ratios of in utero PRRSV-infected piglets were significantly reduced compared to those of non-PRRSV-infected piglets, and thymic lesions were characterized by severe cortical depletion of thymocytes. Lesions were not observed in piglets born to PRRSV-free sows. Overall, 20 out of 22 piglets in the PRRSV-S. suis dual-infection group died within 1 week after challenge with S. suis (10 of 11 in each of two trials). This contrasts with 1 of 18 piglets in the PRRSV-infection-only group and 5 of 23 piglets in the S. suis-challenge-only group (1 of 12 in trial 1 and 4 of 11 in trial 2). No piglets died in the uninfected control groups. Most of the piglets in the PRRSV-S. suis dual-infection group developed suppurative meningitis. S. suis type II was recovered from their brains and joints. These results indicate that in utero infection by PRRSV makes piglets more susceptible to infection and disease following challenge by S. suis type II. In utero infection by PRRSV may provide a useful model to study the interaction between PRRSV and bacterial coinfections in piglets.


2006 ◽  
Vol 189 (4) ◽  
pp. 1254-1265 ◽  
Author(s):  
José L. Llácer ◽  
Luis Mariano Polo ◽  
Sandra Tavárez ◽  
Benito Alarcón ◽  
Rebeca Hilario ◽  
...  

ABSTRACT Enterococcus faecalis makes ATP from agmatine in three steps catalyzed by agmatine deiminase (AgDI), putrescine transcarbamylase (PTC), and carbamate kinase (CK). An antiporter exchanges putrescine for agmatine. We have cloned the E. faecalis ef0732 and ef0734 genes of the reported gene cluster for agmatine catabolism, overexpressed them in Escherichia coli, purified the products, characterized them functionally as PTC and AgDI, and crystallized and X-ray diffracted them. The 1.65-Å-resolution structure of AgDI forming a covalent adduct with an agmatine-derived amidine reactional intermediate is described. We provide definitive identification of the gene cluster for agmatine catabolism and confirm that ornithine is a genuine but poor PTC substrate, suggesting that PTC (found here to be trimeric) evolved from ornithine transcarbamylase. N-(Phosphonoacetyl)-putrescine was prepared and shown to strongly (Ki = 10 nM) and selectively inhibit PTC and to improve PTC crystallization. We find that E. faecalis AgDI, which is committed to ATP generation, closely resembles the AgDIs involved in making polyamines, suggesting the recruitment of a polyamine-synthesizing AgDI into the AgDI pathway. The arginine deiminase (ADI) pathway of arginine catabolism probably supplied the genes for PTC and CK but not those for the agmatine/putrescine antiporter, and thus the AgDI and ADI pathways are not related by a single “en bloc” duplication event. The AgDI crystal structure reveals a tetramer with a five-blade propeller subunit fold, proves that AgDI closely resembles ADI despite a lack of sequence identity, and explains substrate affinity, selectivity, and Cys357-mediated-covalent catalysis. A three-tongued agmatine-triggered gating opens or blocks access to the active center.


1998 ◽  
Vol 180 (16) ◽  
pp. 4154-4159 ◽  
Author(s):  
Manuel Zúñiga ◽  
Marie Champomier-Verges ◽  
Monique Zagorec ◽  
Gaspar Pérez-Martínez

ABSTRACT Lactobacillus sake can use arginine via the arginine deiminase (ADI) pathway. We designed degenerate primers based on an alignment of known sequences of ornithine transcarbamoylase (OTC)-encoding genes in order to amplify the L. sakecounterpart sequences by PCR. Screening a genomic library of L. sake in λEMBL3 allowed us to isolate a clone containing a 10-kbL. sake genomic DNA insert. Sequence analysis revealed that the genes involved in arginine catabolism were clustered and encoded ADI (arcA), OTC (arcB), carbamate kinase (arcC), and a putative carrier with high similarity to the arginine/ornithine antiporter of Pseudomonas aeruginosa(arcD). Additionally, a putative transaminase-encoding gene (arcT) was located in this region. The genes followed the order arcA arcB arcC arcT arcD, which differs from that found in other microorganisms. arcA, arcB,arcC, and arcD mutants were constructed, and the ADI pathway was impaired in all of them. Transcriptional studies indicated that arcA gene is subject to catabolite repression, and under the conditions used, several transcripts could be detected, suggesting the existence of different initiation sites or processing of a larger mRNA.


Pathogens ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 51 ◽  
Author(s):  
Jörg Willenborg ◽  
Anna Koczula ◽  
Marcus Fulde ◽  
Astrid de Greeff ◽  
Andreas Beineke ◽  
...  

2012 ◽  
Vol 80 (12) ◽  
pp. 4291-4297 ◽  
Author(s):  
Younho Choi ◽  
Jeongjoon Choi ◽  
Eduardo A. Groisman ◽  
Dong-Hyun Kang ◽  
Dongwoo Shin ◽  
...  

ABSTRACTArginine deiminase (ADI), carbamate kinase (CK), and ornithine transcarbamoylase (OTC) constitute the ADI system. In addition to metabolic functions, the ADI system has been implicated in the virulence of certain pathogens. The pathogenic intracellular bacteriumSalmonella entericaserovar Typhimurium possesses theSTM4467,STM4466, andSTM4465genes, which are predicted to encode ADI, CK, and OTC, respectively. Here we report that theSTM4467gene encodes an ADI and that ADI activity plays a role in the successful infection of a mammalian host byS. Typhimurium. AnSTM4467deletion mutant was defective for replication inside murine macrophages and was attenuated for virulence in mice. We determined that a regulatory protein encoded by theSTM4463gene functions as an activator forSTM4467expression. The expression of the ADI pathway genes was enhanced inside macrophages in a process that required STM4463. Lack of STM4463 impaired the ability ofS. Typhimurium to replicate within macrophages. A mutant defective inSTM4467-encoded ADI displayed normal production of nitric oxide by macrophages.


2002 ◽  
Vol 184 (24) ◽  
pp. 6768-6776 ◽  
Author(s):  
Nora Winterhoff ◽  
Ralph Goethe ◽  
Petra Gruening ◽  
Manfred Rohde ◽  
Henryk Kalisz ◽  
...  

ABSTRACT The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42°C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42°C induced expression of two cell wall-associated proteins with apparent molecular masses of approximately 47 and 53 kDa. Amino-terminal sequence analysis of the two proteins indicated homologies of the 47-kDa protein with an ornithine carbamoyltransferase (OCT) from Streptococcus pyogenes and of the 53-kDa protein with the streptococcal acid glycoprotein (SAGP) from S. pyogenes, an arginine deiminase (AD) recently proposed as a putative virulence factor. Cloning and sequencing the genes encoding the putative OCT and AD of S. suis, octS and adiS, respectively, revealed that they had 81.2 (octS) and 80.2% (adiS) identity with the respective genes of S. pyogenes. Both genes belong to the AD system, also found in other bacteria. Southern hybridization analysis demonstrated the presence of the adiS gene in all 42 serotype 2 and 9 S. suis strains tested. In 9 of these 42 strains, selected randomly, we confirmed expression of the AdiS protein, homologous to SAGP, by immunoblot analysis using a specific antiserum against the SAGP of S. pyogenes. In all strains AD activity was detected. Furthermore, by immunoelectron microscopy using the anti-S. pyogenes SAGP antiserum we were able to demonstrate that the AdiS protein is expressed on the streptococcal surface in association with the capsular polysaccharides but is not coexpressed with them.


2000 ◽  
Vol 44 (10) ◽  
pp. 2802-2810 ◽  
Author(s):  
I. Caldelari ◽  
B. Loeliger ◽  
H. Langen ◽  
M. P. Glauser ◽  
P. Moreillon

ABSTRACT Penicillin tolerance is an incompletely understood phenomenon that allows bacteria to resist drug-induced killing. Tolerance was studied with independent Streptococcus gordonii mutants generated by cyclic exposure to 500 times the MIC of penicillin. Parent cultures lost 4 to 5 log10 CFU/ml of viable counts/24 h. In contrast, each of four independent mutant cultures lost ≤2 log10 CFU/ml/24 h. The mutants had unchanged penicillin-binding proteins but contained increased amounts of two proteins with respective masses of ca. 50 and 45 kDa. One mutant (Tol1) was further characterized. The two proteins showing increased levels were homologous to the arginine deiminase and ornithine carbamoyl transferase of other gram-positive bacteria and were encoded by an operon that was >80% similar to the arginine-deiminase (arc) operon of these organisms. Partial nucleotide sequencing and insertion inactivation of the S. gordonii arc locus indicated that tolerance was not a direct consequence of arc alteration. On the other hand, genetic transformation of tolerance by Tol1 DNA always conferredarc deregulation. In nontolerant recipients,arc was repressed during exponential growth and up-regulated during postexponential growth. In tolerant transformants,arc was constitutively expressed. Tol1 DNA transformed tolerance at the same rate as transformation of a point mutation (10−2 to 10−3). The tolerance mutation mapped on a specific chromosomal fragment but was physically distant fromarc. Importantly, arc deregulation was observed in most (6 of 10) of additional independent penicillin-tolerant mutants. Thus, although not exclusive, the association betweenarc deregulation and tolerance was not fortuitous. Since penicillin selection mimicked the antibiotic pressure operating in the clinical environment, arc deregulation might be an important correlate of naturally occurring tolerance and help in understanding the mechanism(s) underlying this clinically problematic phenotype.


2006 ◽  
Vol 52 (9) ◽  
pp. 868-876 ◽  
Author(s):  
Kyongsu Hong

Streptococcus equi subsp. zooepidemicus is an important cause of infectious diseases in horses and rarely humans. Little is known about the virulence factors or protective antigens of S. equi subsp. zooepidemicus. In the present study, I designed original primers based on an alignment of the gene sagp(arcA) from Streptococcus pyogenes encoding streptococcal acid glycoprotein – arginine deiminase (SAGP/AD) to amplify the S. equi subsp. zooepidemicus counterpart sequence by polymerase chain reaction, and I analyzed the sagp(arcA) gene of the organism. Using chromosomal walking steps, I identified a contiguous eight-gene locus involved in SAGP/AD production. Their open reading frames were found to share significant homologies and to correspond closely in molecular mass to previously sequenced arc genes of S. pyogenes, thus they were designated ahrC.2 (arginine repressor), arcR (CRP/FNR transcription regulator), sagp(arcA) (streptococcal acid glycoprotein – arginine deiminase), putative acetyltransferase gene, arcB (ornithine carbamyl transferase), arcD (arginine–ornithine antiporter), arcT (Xaa-His peptidase), and arcC (carbamate kinase). The SAGP homologue of S. equi subsp. zooepidemicus (SzSAGP), encoded by arcA gene of the bacteria (arcA(SZ)), was successfully expressed in Escherichia coli and purified to homogeneity. When in vitro growth inhibitory activity of the recombinant SzSAGP was tested against MOLT-3 cells, it inhibited the growth of the cells during the 3 days of culture in a dose-dependent manner, accompanied by the induction of apoptotic cell death. The recombinant protein also possessed AD activity. By immunoblot analysis using both anti-SzSAGP-SfbI(H8) and anti-SfbI(H8) sera, I was able to demonstrate that the SzSAGP protein is expressed on the streptococcal surface.Key words: SAGP, arginine deiminase, Streptococcus equi subsp. zooepidemicus.


2002 ◽  
Vol 184 (22) ◽  
pp. 6289-6300 ◽  
Author(s):  
Belén Barcelona-Andrés ◽  
Alberto Marina ◽  
Vicente Rubio

ABSTRACT Although Enteroccus faecalis is the paradigm for biochemical studies on the arginine deiminase (ADI) pathway of fermentative arginine catabolism, little genetic information exists on this pathway in this organism. We fill this important gap by characterizing, in an 8,228-bp region cloned from a λgt11 genomic library of E. faecalis, a five-gene cluster forming a transcriptional unit (revealed by Northern blots and primer extension in E. faecalis) that corresponds to the ADI operon. Four additional genes in the opposite DNA strand and one in the same DNA strand are also identified. Studies on the protein products, including heterologous expression and/or sequence comparisons, allow us to ascertain or propose functions for all but 1 of the 10 genes. The ADI operon genes, arcABCRD, encode, respectively, ADI, ornithine transcarbamylase, carbamate kinase, a putative Crp/Fnr-type regulator (ArcR), and a putative ornithine-arginine antiporter (ArcD). Arginine induces the expression of arcABCRD, most likely by means of two homologous ArgR/AhrC-type regulators encoded by two genes, argR1 and argR2, that precede arcABCRD in each DNA strand and that are transcribed monocistronically, their transcription being influenced differentially by glucose and arginine. Potential ArgR1/ArgR2 (double and single) binding sequences are found in the promoter regions of arcA and of argR1/argR2 themselves. In addition, putative binding sequences for ArcR and for CcpA are found, respectively, in the argR1/argR2 and arcA promoter regions. Of the three other genes identified, two form a transcriptional unit and encode a putative metal-sensitive transcriptional regulator (ArsR) and a cysteine protease.


Sign in / Sign up

Export Citation Format

Share Document