scholarly journals Quorum-Sensing Signal Synthesis by the Yersinia pestis Acyl-Homoserine Lactone Synthase YspI

2006 ◽  
Vol 188 (2) ◽  
pp. 784-788 ◽  
Author(s):  
J. Paul Kirwan ◽  
Ty A. Gould ◽  
Herbert P. Schweizer ◽  
Scott W. Bearden ◽  
Robert C. Murphy ◽  
...  

ABSTRACT The acyl-homoserine lactone molecular species (AHLs) produced by the Yersinia pestis AHL synthase YspI were identified by biochemical and physical/chemical techniques. Bioassays of extracts from culture supernatants of the recombinant YspI and wild-type Yersinia pestis showed similar profiles of AHLs. Analysis by liquid chromatography-mass spectrometry revealed that the predominant AHLs were N-3-oxooctanoyl-l-homoserine lactone and N-3-oxo-hexanoyl-l-homoserine lactone.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Pei-Ling Yong ◽  
Kok-Gan Chan

We isolated a bacterial isolate (F7) from potable water. The strain was identified asMesorhizobiumsp. by 16S rDNA gene phylogenetic analysis and screened forN-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely,N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) andN-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.


2006 ◽  
Vol 73 (2) ◽  
pp. 650-654 ◽  
Author(s):  
Christophe Dubuis ◽  
Dieter Haas

ABSTRACT Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication.


2000 ◽  
Vol 68 (8) ◽  
pp. 4452-4461 ◽  
Author(s):  
Valerie A. Geoffroy ◽  
Jacqueline D. Fetherston ◽  
Robert D. Perry

ABSTRACT One prerequisite for the virulence of Yersinia pestis, causative agent of bubonic plague, is the yersiniabactin (Ybt) siderophore-dependent iron transport system that is encoded within a high-pathogenicity island (HPI) within the pgm locus of theY. pestis chromosome. Several gene products within the HPI have demonstrated functions in the synthesis or transport of Ybt. Here we examine the roles of ybtU and ybtT. In-frame mutations in ybtT or ybtU yielded strains defective in siderophore production. Mutant strains were unable to grow on iron-deficient media at 37°C but could be cross-fed by culture supernatants from a Ybt-producing strain of Y. pestis. TheybtU mutant failed to express four indicator Ybt proteins (HMWP1, HMWP2, YbtE, and Psn), a pattern similar to those for otherybt biosynthetic mutants. In contrast, strains carrying mutations in ybtT or ybtS (a previously identified gene required for Ybt biosynthesis) produced all four proteins at wild-type levels under iron-deprived conditions. To assess the effects of ybtT, -U, and -Smutations on transcription of ybt genes, reporter plasmids with ybtP or psn promoters controllinglacZ expression were introduced into these mutants. Normal iron-regulated β-galactosidase activity was observed in theybtT and ybtS mutants, whereas a significant loss of expression occurred in the ΔybtU strain. These results show that ybtT and ybtU genes are involved in the biosynthesis of the Ybt siderophore and that aybtU mutation but not ybtT or ybtSmutations affects transcription from the ybtP andpsn promoters.


2015 ◽  
Vol 81 (17) ◽  
pp. 5917-5926 ◽  
Author(s):  
Brett L. Mellbye ◽  
Peter J. Bottomley ◽  
Luis A. Sayavedra-Soto

ABSTRACTNitrobacter winogradskyiis a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functionalN-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. TheN. winogradskyigenome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626,nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627,nwiR) with amino acid sequences 38 to 78% identical to those inRhodopseudomonas palustrisand otherRhizobiales. Expression ofnwiIandnwiRcorrelated with acyl-HSL production during culture.N. winogradskyiproduces two distinct acyl-HSLs,N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.


2015 ◽  
Author(s):  
Kok-Gan Chan ◽  
Wen-Si Tan

Enterobacter cancerogenus strain M004 genome size is 5.67 Mb. Here, its luxI homologue, designated as ecnI which is ecnI gene (633 bp) was cloned and overexpressed. Its AHL synthesis activity was verified using the high-resolution liquid chromatography-mass spectrometry analysis revealed the production of N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C8-HSL). The cloning and characterization of luxI homologue of E. cancerogenus strain M004 was firstly reported here.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Rebecca L. Scholz ◽  
E. Peter Greenberg

ABSTRACTMany proteobacteria utilize acyl-homoserine lactone quorum-sensing signals. At low population densities, cells produce a basal level of signal, and when sufficient signal has accumulated in the surrounding environment, it binds to its receptor, and quorum-sensing-dependent genes can be activated. A common characteristic of acyl-homoserine lactone quorum sensing is that signal production is positively autoregulated. We have examined the role of positive signal autoregulation inPseudomonas aeruginosa. We compared population responses and individual cell responses in populations of wild-typeP. aeruginosato responses in a strain with the signal synthase gene controlled by an arabinose-inducible promoter so that signal was produced at a constant rate per cell regardless of cell population density. At a population level, responses of the wild type and the engineered strain were indistinguishable, but the responses of individual cells in a population of the wild type showed greater synchrony than the responses of the engineered strain. Although sufficient signal is required to activate expression of quorum-sensing-regulated genes, it is not sufficient for activation of certain genes, the late genes, and their expression is delayed until other conditions are met. We found that late gene responses were reduced in the engineered strain. We conclude that positive signal autoregulation is not a required element in acyl-homoserine lactone quorum sensing, but it functions to enhance synchrony of the responses of individuals in a population. Synchrony might be advantageous in some situations, whereas a less coordinated quorum-sensing response might allow bet hedging and be advantageous in other situations.IMPORTANCEThere are many quorum-sensing systems that involve a transcriptional activator, which responds to an acyl-homoserine lactone signal. In all of the examples studied, the gene coding for signal production is positively autoregulated by the signal, and it has even been described as essential for a quorum-sensing response. We have used the opportunistic pathogenPseudomonas aeruginosaas a model to show that positive autoregulation is not required for a robust quorum-sensing response. We also show that positive autoregulation of signal production enhances the synchrony of the response. This information enhances our general understanding of the biological significance of how acyl-homoserine lactone quorum-sensing circuits are arranged.


2013 ◽  
Vol 81 (4) ◽  
pp. 1172-1185 ◽  
Author(s):  
Wei Sun ◽  
David A. Six ◽  
C. Michael Reynolds ◽  
Hak Suk Chung ◽  
Christian R. H. Raetz ◽  
...  

ABSTRACTSynthesis ofEscherichia coliLpxL, which transfers a secondary laurate chain to the 2′ position of lipid A, inYersinia pestisproduced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::PlpxLlpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuatedY. pestisvaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, fromFrancisella tularensisinY. pestisyields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence ofY. pestisin mice when it was administered i.n. but actually reduced the 50% lethal dose (LD50) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-typeY. pestisKIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast toSalmonella enterica, expression of LpxE does not attenuate the virulence ofY. pestis.


1999 ◽  
Vol 181 (12) ◽  
pp. 3816-3823 ◽  
Author(s):  
Belen Rodelas ◽  
James K. Lithgow ◽  
Florence Wisniewski-Dye ◽  
Andrea Hardman ◽  
Adam Wilkinson ◽  
...  

ABSTRACT The rhi genes of Rhizobium leguminosarumbiovar viciae are expressed in the rhizosphere and play a role in the interaction with legumes, such as the pea. Previously (K. M. Gray, J. P. Pearson, J. A. Downie, B. E. A. Boboye, and E. P. Greenberg, J. Bacteriol. 178:372–376, 1996) therhiABC operon had been shown to be regulated by RhiR and to be induced by addedN-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3OH,C14:1-HSL). Mutagenesis of a cosmid carrying the rhiABC and rhiR gene region identified a gene (rhiI) that affects the level of rhiAexpression. Mutation of rhiI slightly increased the number of nodules formed on the pea. The rhiI gene is (likerhiA) regulated by rhiR in a cell density-dependent manner. RhiI is similar to LuxI and other proteins involved in the synthesis of N-acyl-homoserine lactones (AHLs). Chemical analyses of spent culture supernatants demonstrated that RhiI produces N-(hexanoyl)-l-homoserine lactone (C6-HSL) andN-(octanoyl)-l-homoserine lactone (C8-HSL). Both of these AHLs induced rhiA-lacZand rhiI-lacZ expression on plasmids introduced into anAgrobacterium strain that produces no AHLs, showing thatrhiI is positively regulated by autoinduction. However, in this system no induction of rhiA or rhiI with 3OH,C14:1-HSL was observed. Analysis of the spent culture supernatant of the wild-type R. leguminosarum bv. viciae revealed that at least seven different AHLs are made. Mutation ofrhiI decreased the amounts of C6-HSL and C8-HSL but did not block their formation, and in this background the rhiI mutation did not significantly affect the expression levels of the rhiI gene orrhiABC genes or the accumulation of RhiA protein. These observations suggest that there are additional loci involved in AHL production in R. leguminosarum bv. viciae and that they affect rhiI and rhiABC expression. We postulate that the previously observed induction of rhiA by 3OH,C14:1-HSL may be due to an indirect effect caused by induction of other AHL production loci.


2013 ◽  
Vol 80 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Jie Gao ◽  
Anzhou Ma ◽  
Xuliang Zhuang ◽  
Guoqiang Zhuang

ABSTRACTThe chemolithoautotrophic bacteriumNitrosospira multiformisis involved in affecting the process of nitrogen cycling. Here we report the existence and characterization of a functional quorum sensing signal synthase inN. multiformis. One gene (nmuI) playing a role in generating a protein with high levels of similarity toN-acyl homoserine lactone (AHL) synthase protein families was identified. Two AHLs (C14-AHL and 3-oxo-C14-AHL) were detected using an AHL biosensor and liquid chromatography-mass spectrometry (LC-MS) whennmuI, producing a LuxI homologue, was introduced intoEscherichia coli. However, by extractingN. multiformisculture supernatants with acidified ethyl acetate, no AHL product was obtained that was capable of activating the biosensor or being detected by LC-MS. According to reverse transcription-PCR, thenmuIgene is transcribed inN. multiformis, and a LuxR homolog (NmuR) in this ammonia-oxidizing strain showed great sensitivity to long-chain AHL signals by solubility assay. A degradation experiment demonstrated that the absence of AHL signals might be attributed to the possible AHL-inactivating activities of this strain. To summarize, an AHL synthase gene (nmuI) acting as a long-chain AHL producer has been found in a chemolithotrophic ammonia-oxidizing microorganism, and the results provide an opportunity to complete the knowledge of the regulatory networks inN. multiformis.


Sign in / Sign up

Export Citation Format

Share Document