scholarly journals Methicillin-Resistant Staphylococcus aureus in Hospitals: Latest Trends and Treatments Based on Bacteriophages

2019 ◽  
Vol 57 (12) ◽  
Author(s):  
Andrea Álvarez ◽  
Lucía Fernández ◽  
Diana Gutiérrez ◽  
Beatriz Iglesias ◽  
Ana Rodríguez ◽  
...  

ABSTRACT Even though antibiotic resistance in bacteria is a natural phenomenon, the alarming increase in pathogenic bacteria refractory to a wide range of antimicrobials is attracting attention worldwide. Indeed, the World Health Organization (WHO) has recently published a list of priority pathogens for which new antimicrobial alternatives are urgently needed. Among these pathogens, methicillin-resistant Staphylococcus aureus (MRSA) strains are perhaps the best known by the general public. In addition to its potential to acquire antibiotic resistance, S. aureus can produce a large number of virulence factors, such as hemolysins, enterotoxins, and proteases, and exhibits the ability to form biofilms as well as to evolve into different clones that can spread and colonize new environments. This review provides a brief overview of the latest options in antibacterial therapies, mainly focusing on phage therapy. In this regard, the current stage of research about antimicrobial compounds based on bacteriophages and endolysins against MRSA infections is shown and discussed.

2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Catarina Milheiriço ◽  
Hermínia de Lencastre ◽  
Alexander Tomasz

ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Janina Dordel ◽  
Choonkeun Kim ◽  
Marilyn Chung ◽  
María Pardos de la Gándara ◽  
Matthew T. J. Holden ◽  
...  

ABSTRACTWe identified mutated genes in highly resistant subpopulations of methicillin-resistantStaphylococcus aureus(MRSA) that are most likely responsible for the historic failure of the β-lactam family of antibiotics as therapeutic agents against these important pathogens. Such subpopulations are produced during growth of most clinical MRSA strains, including the four historically early MRSA isolates studied here. Chromosomal DNA was prepared from the highly resistant cells along with DNA from the majority of cells (poorly resistant cells) followed by full genome sequencing. In the highly resistant cells, mutations were identified in 3 intergenic sequences and 27 genes representing a wide range of functional categories. A common feature of these mutations appears to be their capacity to induce high-level β-lactam resistance and increased amounts of the resistance protein PBP2A in the bacteria. The observations fit a recently described model in which the ultimate controlling factor of the phenotypic expression of β-lactam resistance in MRSA is a RelA-mediated stringent response.IMPORTANCEIt has been well established that the level of antibiotic resistance (i.e., minimum concentration of a β-lactam antibiotic needed to inhibit growth) of a methicillin-resistantStaphylococcus aureus(MRSA) strain depends on the transcription and translation of the resistance protein PBP2A. Here we describe mutated loci in an additional novel set of genetic determinants that appear to be essential for the unusually high resistance levels typical of subpopulations of staphylococci that are produced with unique low frequency in most MRSA clinical isolates. We propose that mutations in these determinants can trigger induction of the stringent stress response which was recently shown to cause increased transcription/translation of the resistance protein PBP2A in parallel with the increased level of resistance.


Author(s):  
Megha Chaudhary ◽  
Vinit Kumar ◽  
Sonika Singh

Introduction: Community acquired MRSA (CA-MRSA) has been increasingly examined from India(4). A network of microbiology labs (Indian Organization for Surveillance of Antimicrobial Resistance - INSAR) at premier medical colleges and hospitals in India was assembled with support from the World Health Organization (figure). Prevalence of Methicillin Resistant Staphylococcus Aureus: A study displays an alarmingly high incidence of MRSA corruption in the BHU hospital. The prevalence rate is established to be 54.8%, which is much higher than most of the results where it ranged between 20% to 32.8%.(17),(18) The only report which has given somewhat similar result i.e. 51.6% is from LN Hospital, New Delhi.(19) Further, a study from Indore has shown a grow in MRSA prevalence from 12% in 1992 to 80.89% in 1999.(20) Modes of transmission and virulence factors: Due to its capability to colonize a wide range of strains (all mammals including rodents and lagomorphs), S. aureus can easily be transmitted from one species to another; from humans to animals and reverse. Staphylococcal infections are zoonotic in nature. Antibiotic Reaction on Human: The sensitivity patterns of divided to different antibiotic discs were read by measuring the diameter of area of inhibition in millimeter as per the chart provided by manufacturer and classified as Sensitive, Intermediate and Resistant based on CLSI guidelines.(8) Keywords: Antimicrobial, Bugs, Lagomorphs, MRSA, Rodent, Sensitivity, Staphylococcus.


2015 ◽  
Vol 59 (8) ◽  
pp. 4497-4503 ◽  
Author(s):  
Katie E. Barber ◽  
Jordan R. Smith ◽  
Cortney E. Ireland ◽  
Blaise R. Boles ◽  
Warren E. Rose ◽  
...  

ABSTRACTAnnually, medical device infections are associated with >250,000 catheter-associated bloodstream infections (CLABSI), with up to 25% mortality.Staphylococcus aureus, a primary pathogen in these infections, is capable of biofilm production, allowing organism persistence in harsh environments, offering antimicrobial protection. With increases inS. aureusisolates with reduced susceptibility to current agents, ceftaroline (CPT) offers a therapeutic alternative. Therefore, we evaluated whether CPT would have a role against biofilm-producing methicillin-resistantS. aureus(MRSA), including those with decreased susceptibilities to alternative agents. In this study, we investigated CPT activity alone or combined with daptomycin (DAP) or rifampin (RIF) against 3 clinical biofilm-producing MRSA strains in anin vitrobiofilm pharmacokinetic/pharmacodynamic (PK/PD) model. Simulated antimicrobial regimens were as follows: 600 mg of CPT every 8 h (q8h) (free maximum concentration of drug [fCmax], 17.04 mg/liter; elimination half-life [t1/2], 2.66 h), 12 mg/kg of body weight/day of DAP (fCmax, 14.7 mg/liter;t1/2, 8 h), and 450 mg of RIF q12h (fCmax, 3.5 mg/liter;t1/2, 3.4 h), CPT plus DAP, and CPT plus RIF. Samples were obtained and plated to determine colony counts. Differences in log10CFU/cm2were evaluated by analysis of variance with Tukey'spost hoctest. The strains were CPT and vancomycin susceptible and DAP nonsusceptible (DNS). CPT displayed activity throughout the experiment. DAP demonstrated initial activity with regrowth at 24 h in all strains. RIF was comparable to the drug-free control, and little benefit was observed when combined with CPT. CPT plus DAP displayed potent activity, with an average log10CFU/cm2reduction of 3.33 ± 1.01 from baseline. CPT demonstrated activity against biofilm-producing DNS MRSA. CPT plus DAP displayed therapeutic enhancement over monotherapy, providing a potential option for difficult-to-treat medical device infections.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Sara Ceballos ◽  
Choon Kim ◽  
Derong Ding ◽  
Shahriar Mobashery ◽  
Mayland Chang ◽  
...  

ABSTRACT The activities of four oxadiazoles were investigated with 210 methicillin-resistant Staphylococcus aureus (MRSA) strains. MIC50 and MIC90 values of 1 to 2 and 4 μg/ml, respectively, were observed. We also evaluated the activity of oxadiazole ND-421 against other staphylococci and enterococci and in the presence of oxacillin for selected MRSA strains. The MIC for ND-421 is lowered severalfold in combination with oxacillin, as they synergize. The MIC90 of ND-421 against vancomycin-resistant enterococci is ≤1 μg/ml.


Author(s):  
Abolfazl Jafari-Sales ◽  
Zahra Sadeghi Deylamdeh ◽  
Afsoon Shariat

Introduction: Staphylococcus aureus causes a wide range of infections and as a multivalent pathogen is one of the causative agents of nosocomial and community infections. Therefore, the aim of this study was to identify and determine the pattern of antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients in hospitals and medical centers in Marand city and also to evaluate the presence of mecA gene. Materials and Methods: In this cross-sectional descriptive study, 385 samples of S. aureus were collected from different clinical samples of patients in hospitals and medical centers of Marand city. S. aureus was identified using standard biochemical methods.  Methicillin resistance was determined by disk diffusion method in the presence of oxacillin and cefoxitin. The pattern of antibiotic resistance of the strains was determined by disk diffusion method and according to CLSI recommendation and also PCR method was used to evaluate the frequency of MecA gene. Results: In the present study, out of 385 samples of S. aureus, 215 (55.84%) samples were methicillin resistant. PCR results for mecA gene showed that 110 samples had mecA gene.  The highest antibiotic resistance was observed against penicillin (100%) and erythromycin (83.63%). Most MRSA were isolated from urine and wound samples. Conclusion: The results of this study indicate the prevalence of methicillin-resistant species and also the increase in antibiotic resistance of MRSA to various antibiotics.  Therefore, in order to prevent increased resistance to other antibiotics, it is recommended to avoid inappropriate use of antibiotics.


2020 ◽  
Vol 58 (5) ◽  
Author(s):  
Seyed A. Ghorashi ◽  
Jane Heller ◽  
Quincy Zhang ◽  
Shafi Sahibzada

ABSTRACT Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are present worldwide and represent a major public health concern. The capability of PCR followed by high-resolution melt (HRM) curve analysis for the detection of community-associated and livestock-associated MRSA strains and the identification of staphylococcal protein A (spa) locus was evaluated in 74 MRSA samples which were isolated from the environment, humans, and pigs on a single piggery. PCR-HRM curve analysis identified four spa types among MRSA samples and differentiated MRSA strains accordingly. A nonsubjective differentiation model was developed according to genetic confidence percentage values produced by tested samples, which did not require visual interpretation of HRM curve results. The test was carried out at different settings, and result data were reanalyzed and confirmed with DNA sequencing. PCR-HRM curve analysis proved to be a robust and reliable test for spa typing and can be used as a tool in epidemiological studies.


2019 ◽  
Vol 8 (6) ◽  
pp. 816 ◽  
Author(s):  
Kuo-Ti Peng ◽  
Tsung-Yu Huang ◽  
Yao-Chang Chiang ◽  
Yu-Yi Hsu ◽  
Fang-Yi Chuang ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) causes superficial infections such as cellulitis or invasive infections such as osteomyelitis; however, differences in MRSA isolates from cellulitis (CL-MRSA) and from osteomyelitis (OM-MRSA) at the same local area remain largely unknown. A total of 221 MRSA isolates including 106 CL-MRSA strains and 115 OM-MRSA strains were collected at Chang-Gung Memorial Hospital in Taiwan between 2016 and 2018, and their genotypic and phenotypic characteristics were compared. We found that OM-MRSA isolates significantly exhibited higher rates of resistance to multiple antibiotics than CL-MRSA isolates. Genotypically, OM-MRSA isolates had higher proportions of the SCCmec type III, the sequence type ST239, and the spa type t037 than CL-MRSA isolates. Besides the multidrug-resistant lineage ST239-t037-SCCmecIII more prevalent in OM-MRSA, higher antibiotic resistance rates were also observed in several other prevalent lineages in OM-MRSA as compared to the same lineages in CL-MRSA. Furthermore, when prosthetic joint infection (PJI) associated and non-PJI-associated MRSA strains in osteomyelitis were compared, no significant differences were observed in antibiotic resistance rates between the two groups, albeit more diverse genotypes were found in non-PJI-associated MRSA. Our findings therefore suggest that deep infections may allow MRSA to evade antibiotic attack and facilitate the convergent evolution and selection of multidrug-resistant lineages.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Justine Fri ◽  
Henry A. Njom ◽  
Collins N. Ateba ◽  
Roland N. Ndip

Thirty-three (33) isolates of methicillin-resistant Staphylococcus aureus (MRSA) from healthy edible marine fish harvested from two aquaculture settings and the Kariega estuary, South Africa, were characterised in this study. The phenotypic antimicrobial susceptibility profiles to 13 antibiotics were determined, and their antibiotic resistance determinants were assessed. A multiplex PCR was used to determine the epidemiological groups based on the type of SCCmec carriage followed by the detection of staphylococcal enterotoxin-encoding genes sea-sed and the Panton Valentine leucocidin gene (pvl). A high antibiotic resistance percentage (67–81%) was observed for Erythromycin, Ampicillin, Rifampicin, and Clindamycin, while maximum susceptibility to Chloramphenicol (100%), Imipenem (100%), and Ciprofloxacin (94%) was recorded. Nineteen (58%) of the MRSA strains had Vancomycin MICs of ≤2 μg/mL, 4 (12%) with MICs ranging from 4–8 μg/mL, and 10 (30%) with values ≥16 μg/mL. Overall, 27 (82%) isolates were multidrug-resistant (MDR) with Erythromycin-Ampicillin-Rifampicin-Clindamycin (E-AMP-RIP-CD) found to be the dominant antibiotic-resistance phenotype observed in 4 isolates. Resistance genes such as tetM, tetA, ermB, blaZ, and femA were detected in two or more resistant strains. A total of 19 (58%) MRSA strains possessed SCCmec types I, II, or III elements, characteristic of healthcare-associated MRSA (HA-MRSA), while 10 (30%) isolates displayed SCCmec type IVc, characteristic of community-associated MRSA (CA-MRSA). Six (18%) of the multidrug-resistant strains of MRSA were enterotoxigenic, harbouring the see, sea, or sec genes. A prevalence of 18% (6/33) was also recorded for the luk-PVL gene. The findings of this study showed that marine fish contained MDR-MRSA strains that harbour SCCmec types, characteristic of either HA-MRSA or CA-MRSA, but with a low prevalence of enterotoxin and pvl genes. Thus, there is a need for continuous monitoring and implementation of better control strategies within the food chain to minimise contamination of fish with MDR-MRSA and the ultimate spread of the bug.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Ximena Castañeda ◽  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Juan M. Pericas ◽  
Yolanda Armero ◽  
...  

ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomycin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving a VAN area under the curve/MIC ratio (AUC/MIC) of ≥400 against three methicillin-resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs in an experimental endocarditis model. The valve vegetation bacterial counts after 48 h of VAN therapy were compared, and no differences were observed between the two treatment groups for any of the three strains tested. Overall, for VAN-SD and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%) (P = 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vegetation were 2 (0 to 6.9) and 2 (0 to 4.5) (P = 0.384), respectively. In conclusion, this VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin efficacy in MRSA experimental endocarditis.


Sign in / Sign up

Export Citation Format

Share Document