scholarly journals Detection of Colistin Resistance in Escherichia coli by Use of the MALDI Biotyper Sirius Mass Spectrometry System

2019 ◽  
Vol 57 (12) ◽  
Author(s):  
R. Christopher D. Furniss ◽  
Laurent Dortet ◽  
William Bolland ◽  
Oliver Drews ◽  
Katrin Sparbier ◽  
...  

ABSTRACT Polymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) in less than 15 min but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF MS system (Bruker Daltonics). We optimized the sample preparation protocol by using a set of 6 mobile colistin resistance (MCR) protein-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 confirmed MCR protein producers, 12 colistin-resistant isolates that tested negative for commonly encountered mcr genes (i.e., likely chromosomally resistant isolates), and 9 polymyxin-susceptible isolates. We calculated polymyxin resistance ratio (PRR) values from the acquired spectra; PRR values of 0, indicating polymyxin susceptibility, were obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains, independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test adapted for the routine MALDI Biotyper Sirius system provides an unbiased, fast, reliable, cost-effective, and high-throughput way of detecting colistin resistance in clinical E. coli isolates.

2019 ◽  
Author(s):  
R. Christopher D. Furniss ◽  
Laurent Dortet ◽  
William Bolland ◽  
Oliver Drews ◽  
Katrin Sparbier ◽  
...  

ABSTRACTPolymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by MALDI-TOF mass spectrometry in less than 15 minutes but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF mass spectrometry system (Bruker Daltonics). We optimized the sample preparation protocol using a set of 6 MCR-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 MCR producers, 12 chromosomally-resistant isolates and 9 polymyxin-susceptible isolates. We calculated Polymyxin resistance ratio (PRR) values from the acquired spectra; a PRR value of zero, indicating polymyxin susceptibility, was obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test, adapted for the routine MALDI Biotyper Sirius, provides an unbiased, fast, reliable, cost-effective and high-throughput way of detecting colistin resistance in clinical E. coli isolates.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Anastasia Pavelkovich ◽  
Arta Balode ◽  
Petra Edquist ◽  
Svetlana Egorova ◽  
Marina Ivanova ◽  
...  

The spread of carbapenemase-producing Enterobacteriaceae is a global problem; however, no exact data on the epidemiology of carbapenemase in the Baltic countries and St. Petersburg area is available. We aimed to evaluate the epidemiology of carbapenemase-producingEscherichia coliandKlebsiella pneumoniaein the Baltic States and St. Petersburg, Russia, and to compare the different methods for carbapenemase detection. From January to May 2012, allK. pneumoniae  n=1983andE. coli  n=7774clinical isolates from 20 institutions in Estonia, Latvia, Lithuania, and St. Petersburg, Russia were screened for carbapenem susceptibility. The IMP, VIM, GIM, NDM, KPC, and OXA-48 genes were detected using real-time PCR and the ability to hydrolyze ertapenem was determined using MALDI-TOF MS. Seventy-seven strains were found to be carbapenem nonsusceptible. From these, 15K. pneumoniaestrains hydrolyzed ertapenem and carried theblaNDMgene. All of these strains carried integron 1 and most carried integron 3 as well as genes of the CTX-M-1 group. No carbapenemase-producingE. coliorK. pneumoniaestrains were found in Estonia, Latvia, or Lithuania; however, NDM-positiveK. pneumoniaewas present in the hospital in St. Petersburg, Russia. A MALDI-TOF MS-based assay is a suitable and cost-effective method for the initial confirmation of carbapenemase production.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Jie Lin ◽  
Chunquan Xu ◽  
Renchi Fang ◽  
Jianming Cao ◽  
Xiucai Zhang ◽  
...  

ABSTRACT The goal was to investigate the mechanisms of colistin resistance and heteroresistance in Pseudomonas aeruginosa clinical isolates. Colistin resistance was determined by the broth microdilution method. Colistin heteroresistance was evaluated by population analysis profiling. Time-kill assays were also conducted. PCR sequencing was performed to detect the resistance genes among (hetero)resistant isolates, and quantitative real-time PCR assays were performed to determine their expression levels. Pulsed-field gel electrophoresis and multilocus sequence typing were performed. Lipid A characteristics were determined via matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS). Two resistant isolates and 9 heteroresistant isolates were selected in this study. Substitutions in PmrB were detected in 2 resistant isolates. Among heteroresistant isolates, 8 of 9 heteroresistant isolates had nonsynonymous PmrB substitutions, and 2 isolates, including 1 with a PmrB substitution, had PhoQ alterations. Correspondingly, the expression levels of pmrA or phoP were upregulated in PmrB- or PhoQ-substituted isolates. One isolate also found alterations in ParRS and CprRS. The transcript levels of the pmrH gene were observed to increase across all investigated isolates. MALDI-TOF MS showed additional 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties in lipid A profiles in (hetero)resistant isolates. In conclusion, both colistin resistance and heteroresistance in P. aeruginosa in this study mainly involved alterations of the PmrAB regulatory system. There were strong associations between mutations in specific genetic loci for lipid A synthesis and regulation of modifications to lipid A. The transition of colistin heteroresistance to resistance should be addressed in future clinical surveillance.


Author(s):  
Mehmet E. Bulut ◽  
Gülen Hürkal ◽  
Nazan Dalgıç

Abstract Objective Antimicrobial resistance poses a serious threat to children's health. In recent years, high-risk Escherichia coli ST131 has become an important target for global surveillance studies. The E.coli ST131 clone is associated with extended spectrum β-lactamase (ESBL) production, as well as multidrug resistance and treatment failure. Studies on this clone in the pediatric age group are limited. We aim to investigate the rate of high-risk E. coli ST131 clone in ESBL-positive E. coli isolates obtained from pediatric patients. Methods A total of 292 ESBL-positive E. coli isolates from clinical samples of pediatric patients was included in the study. MALDI-TOF MS system was used for bacterial identification. Susceptibility tests were performed using BD Phoenix automated system. ST131 detection was done by MALDI-TOF-MS. Fisher's exact test was used to compare the groups (significance <0.05). Results A total of 292 isolates was analyzed. The high-risk ST131 clone was detected in 117 (40%) of the 292 ESBL-positive isolates. ST131 rates were found to be significantly higher in children under the age of 5 years compared with children over the age of 5 years (49.3 vs. 31.1%, p = 0.0019). Ciprofloxacin resistance was higher in ST131 isolates (45.6 vs. 31.7%; p < 0.05). Conclusion The rate of the ST131 clone was found to be high in the pediatric population. The significantly high rate of resistance to ciprofloxacin, which is not commonly used in the pediatric population, in ST131 isolates reveals the importance of the spread of high-risk clones for the development of resistance.


2017 ◽  
Vol 83 (13) ◽  
Author(s):  
Barbora Svobodová ◽  
Jiří Vlach ◽  
Petra Junková ◽  
Ludmila Karamonová ◽  
Martina Blažková ◽  
...  

ABSTRACT In the last decade, strains of the genera Franconibacter and Siccibacter have been misclassified as first Enterobacter and later Cronobacter. Because Cronobacter is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying Franconibacter and Siccibacter strains are by biochemical testing or by sequencing of the fusA gene as part of Cronobacter multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for Franconibacter and Siccibacter identification based on intact-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Our method integrates the following steps: data preprocessing using mMass software; principal-component analysis (PCA) for the selection of mass spectrum fingerprints of Franconibacter and Siccibacter strains; optimization of the Biotyper database settings for the creation of main spectrum projections (MSPs). This methodology enabled us to create an in-house MALDI MS database that extends the current MALDI Biotyper database by including Franconibacter and Siccibacter strains. Finally, we verified our approach using seven previously unclassified strains, all of which were correctly identified, thereby validating our method. IMPORTANCE We show that the majority of methods currently used for the identification of Franconibacter and Siccibacter bacteria are not able to properly distinguish these strains from those of Cronobacter. While sequencing of the fusA gene as part of Cronobacter MLST remains the most reliable such method, it is highly expensive and time-consuming. Here, we demonstrate a cost-effective and reliable alternative that correctly distinguishes between Franconibacter, Siccibacter, and Cronobacter bacteria and identifies Franconibacter and Siccibacter at the species level. Using intact-cell MALDI-TOF MS, we extend the current MALDI Biotyper database with 11 Franconibacter and Siccibacter MSPs. In addition, the use of our approach is likely to lead to a more reliable identification scheme for Franconibacter and Siccibacter strains and, consequently, a more trustworthy epidemiological picture of their involvement in disease.


2020 ◽  
Vol 49 (3) ◽  
pp. 307-313
Author(s):  
B. Horváth ◽  
F. Peles ◽  
A. Szél ◽  
R. Sipos ◽  
Á. Erős ◽  
...  

The aim of the study was the identification and characterisation of coagulase-positive Staphylococcus bacteria obtained from food matrices by mass spectrometry and molecular methods. A total of 46 coagulase-positive Staphylococcus isolates were collected from different foodstuffs. The Staphylococcus isolates were identified by MALDI-TOF MS and confirmed by the presence and sequence analysis of the Staphylococcus protein A gene. Staphylococcal enterotoxin genes were also investigated by multiplex PCR. Based on the identification of strains by the MALDI-TOF MS technique and spa-typing, all strains were identified as Staphylococcus aureus. Based on their MS peak profiles, the isolates matched the spectra of three S. aureus reference strains in the Bruker MALDI Biotyper database, with identification scores higher than 1.999 in the case of all 46 (100%) isolates. The isolates showed great genetic variability. Twenty spa types were identified, from which most lineages are capable of colonizing humans. Fifty percent of the strains harboured at least one of four enterotoxin genes (seg, seh, sei, and ser), but none of the classical enterotoxin genes could be detected.


Author(s):  
Nahid Kondori ◽  
Amra Kurtovic ◽  
Beatriz Piñeiro-Iglesias ◽  
Francisco Salvà-Serra ◽  
Daniel Jaén-Luchoro ◽  
...  

Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called “proteotyping”. To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.


Author(s):  
N. Tyshkivskaya ◽  
A. Tyshkivskaya

Use of MALDI-TOF mass spectrometry to identify yeast and molds in animal feed. The material for the work was animal feed samples received for research from diff erent regions of Ukraine. The presence of yeast and molds was determined according to DSTU ISO 7954:2006. To establish the general contamination of the feed with micromycetes, the fungi were fi rst isolated from the feed by planting them on Saburo medium, and the serial dilution method was used to calculate the content of fungi diaspores in 1 g of feed. The feed samples were incubated and studied at a temperature of 24 ° C for 5–7 days. The identifi cation of molds was carried out using the MALDI-TOF method. In the process of mycological examination of feed during 2018–2019. 198 animal feed samples were examined. During the study period, the largest number of feed was examined, which was 30.4% in 2018, of the total number of samples (19.6% - feed for poultry, 10.8% - for pigs). For fi ve months of 2019, we observed the same trend: in 31.1% of cases, the defi nitions of yeast and molds in compound feeds prevailed, of which 19.8% accounted for compound feeds for poultry and in 11.3% of cases for pigs. In second place in the number of studies, corn samples are 11.9 and 11.3% in 2018 and 2019, respectively. The most common types of fungi in the feed were representatives of the genera Fusarium, Penicillium, Aspergillus, Alternaria, Mucor, Rhizopus, Cladosporium. The affi liation of microscopic fungi to specifi c genera was determined by assessing the morphology of the fungal colony on media and the morphology of conidiophore structures Particular attention was paid to microscopic fungi of the Fusarium family, which are producers of various mycotoxins. Using the MALDI Biotyper software, automatic identifi cation was performed based on a comparison of the collected initial spectra of the fungus with the reference spectra of the database of the instrument itself, as well as with the library of the University of Belgium (BCCM, Belgian Co-Ordinateo collections of micro-organism). Following the results of mass spectrometry, microscopic fungi of the Fusarium family were represented by 9 species. Of these, 5 species were most often found: F. proliferatum, F. acutatum, F. subglutinans, F. verticillioides. Among the fungi of the Aspergillus family, A. fl avus, A. pseudoglaucus, A. tubingensis, and A. niger predominated. Species identifi cation of microscopic fungi using mass spectrometry helps quickly and accurately identify mold fungi and yeast. Determination of the species affi liation of microscopic organisms occurs through analysis of the protein fraction of the lysate of microscopic fungi and yeast ("direct protein profi ling"). MALDI Biotyper software includes automatic identifi cation of molds based on a comparison of the output spectra with the reference spectra of the database. Identifi cation of microorganisms using MALDI-TOF MS is based on the assessment of ribosomal proteins that are usually present in the cell. The sensitivity of the MALDI-TOF MS method is 103106 m.k./cm. In this case, the accuracy of identifi cation depends on the amount of test material. To determine the likelyhood of identifi cation, a given logarithmic indicator is the compliance coeffi cient Score, the value of which is used to evaluate the reliability and adequacy of the results. The higher the match rate, the more likely it is to get the correct identifi cation result. MALDI-TOF technology for mass spectrometric identifi cation of micromycetes has a high measurement speed, low cost of reagents and materials used, and simple preparation holes. MALDI-TOF MS has a high diagnostic sensitivity. Key words: mold identifi cation, MALDI-TOF, mass spectrometry, Fusarium, Penicillium, Aspergillus, Alternaria, Mucor, Rhizopus, Cladosporium.


2020 ◽  
Vol 27 (11) ◽  
pp. 1171-1177
Author(s):  
Neelja Singhal ◽  
Divakar Sharma ◽  
Manish Kumar ◽  
Deepa Bisht ◽  
Jugsharan Singh Virdi

Background: Most of the proteomic studies in Escherichia coli have focussed on pathogenic strains, while very few studies have studied the commensal strains. It is important to study the commensal strains because under the selective pressure of their habitat, commensal strains might serve as reservoirs of virulent and pathogenic strains. Objective: In this study, we have performed a comparative proteomic analysis of commensal and pathogenic strains of E. coli isolated from a major river flowing through northern India. Methods: Proteins were resolved by two dimensional gel electrophoresis and the differentially expressed proteins were identified using matrix-assisted laser desorption ionization-time of flight mass-spectrometry (MALDI-TOF MS). Results: Many proteins of the commensal strain showed an increased expression compared to the pathogenic strain, of which seventeen proteins were identified by MALDI-TOF MS. Functional classification of these proteins revealed that they belonged to different functional pathways like energy metabolism, nucleotide and nucleoside conversions, translation, biosynthesis of amino acids and motility and energytaxis/chemotaxis. Conclusion: As per the best of our knowledge, this is the first report on comparative proteomic analysis of E. coli commensal and pathogenic strains of aquatic origin. Our results suggest that the increased production of these proteins might play an important role in adaptation of E. coli to a commensal/pathogenic lifestyle. However, further experiments are required to understand the precise role of these proteins in regulating the pathogenicity/commensalism of E. coli.


2009 ◽  
Vol 58 (9) ◽  
pp. 1154-1159 ◽  
Author(s):  
Pierre-Edouard Fournier ◽  
Carine Couderc ◽  
Sylvain Buffet ◽  
Christophe Flaudrops ◽  
Didier Raoult

Bacteria of the genus Bartonella are emerging zoonotic bacteria recognized in a variety of human diseases. Due to their poor chemical reactivity, these fastidious bacteria are poorly characterized using routine phenotypic laboratory tests. Identification is usually achieved using molecular techniques that are time-consuming, expensive and technically demanding. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a new technique for bacterial species identification. This study evaluated the use of MALDI-TOF MS for rapid genus and species identification of Bartonella species. Reference strains representing 17 recognized Bartonella species were studied. For each species, MS spectra for four colonies were analysed. The consensus spectrum obtained for each species was unique among spectra obtained for 2843 bacteria within the Bruker database, including 109 alphaproteobacteria. Thirty-nine additional blind-coded Bartonella strains were correctly identified at the species level, including 36 with a significant score. Altogether, these data demonstrate that MS is an accurate and reproducible tool for rapid and inexpensive identification of Bartonella species.


Sign in / Sign up

Export Citation Format

Share Document