scholarly journals Four Carbapenem-Resistant Gram-Negative Species Carrying Distinct Carbapenemases in a Single Patient

2014 ◽  
Vol 53 (3) ◽  
pp. 1031-1033 ◽  
Author(s):  
Baixing Ding ◽  
Fupin Hu ◽  
Yang Yang ◽  
Qinglan Guo ◽  
Jinwei Huang ◽  
...  

Carbapenem-resistantEscherichia coli,Klebsiella pneumoniae,Enterobacter aerogenes, andAcinetobacter baumanniiwere isolated from a single patient, each producing different carbapenemases (NDM-1, KPC-2, IMP, and OXA-23, respectively). The NDM-1-producingE. colistrain was preceded by a clonally related carbapenem-susceptible strain a month earlier, suggestingin vivoacquisition ofblaNDM-1.

2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Racha Beyrouthy ◽  
Frederic Robin ◽  
Aude Lessene ◽  
Igor Lacombat ◽  
Laurent Dortet ◽  
...  

ABSTRACT The spread of mcr-1-encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1-encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France.


2021 ◽  
Author(s):  
Abed Zahedi bialvaei ◽  
Alireza Dolatyar Dehkharghani ◽  
Farhad Asgari ◽  
Firouzeh Shamloo ◽  
Parisa Eslami ◽  
...  

Abstract Background Timely detection of carbapenemases is essential for developing strategies to control the spread of infections by carbapenem-resistant isolates. The purpose of our study was to determine the epidemiology of carbapenemase genes among carbapenem resistant isolates of Acinetobacter baumannii, Klebsiella pneumoniae and Escherichia coli and to compare efficacy of modified Hodge Test (MHT), Carba NP and modified carbapenem inactivation method (mCIM) tests. Methods A total of 122 carbapenem-resistant clinical isolates including 77 K. pneumoniae, 39 A. baumannii, and six E. coli were collected from hospitalized patients. Three phenotypic methods, including MHT, Carba NP test and mCIM were used for investigation of carbapenemase production. In addition, polymerase chain reaction (PCR) was performed to detect carbapenemase encoding genes. Results The sensitivity and specificity of the MHT were 75.0% and 100% respectively. In addition, CarbaNP displayed 80.8% sensitivity and 100% specificity, whereas the sensitivity and specificity were 90.4% and 100% for the mCIM test, respectively. Among carbapenem-resistant isolates, 70, 84 and 87 isolates exhibited positive results according to MHT, CarbaNP test and mCIM, respectively. PCR indicated the presence of one or more carbapenemase genes in 119 of carbapenem-resistant isolates, with blaKPC and blaVIM being the most commonly encountered. Co-production of ‘KPC and VIM’, ‘KPC and IMP’ and ‘KPC and OXA-48’ was detected in nine, seven and three isolates, respectively. Conclusion Our results confirm that the mCIM test is a useful tool for the reliable detection of carbapenemases-activity in enterobacterial isolates, especially in clinical microbiological laboratories with limited resources.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Abed Zahedi Bialvaei ◽  
Alireza Dolatyar Dehkharghani ◽  
Farhad Asgari ◽  
Firouzeh Shamloo ◽  
Parisa Eslami ◽  
...  

Abstract Purpose Timely detection of carbapenemases is essential for developing strategies to control the spread of infections by carbapenem-resistant isolates. The purpose of this study was to determine the epidemiology of carbapenemase genes among carbapenem-resistant isolates of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli. In addition, the efficacy of the modified Hodge test (MHT), Carba NP test, and modified carbapenem inactivation method (mCIM) were compared. Methods A total of 122 carbapenem-resistant clinical isolates including 77 K. pneumoniae, 39 A. baumannii, and six E. coli were collected from hospitalized patients. Three phenotypic methods, including the MHT, Carba NP test, and mCIM were used for investigation of carbapenemase production. In addition, polymerase chain reaction (PCR) was performed to detect carbapenemase-encoding genes. Result The sensitivity and specificity of the MHT were 75.0% and 100%, respectively. In addition, Carba NP displayed 80.8% sensitivity and 100% specificity, whereas the sensitivity and specificity were 90.4% and 100% for the mCIM test, respectively. Among carbapenem-resistant isolates, 70, 84, and 87 isolates exhibited positive results according to the MHT, Carba NP test, and mCIM, respectively. PCR indicated the presence of one or more carbapenemase genes in 119 of carbapenem-resistant isolates, with blaKPC and blaVIM being the most commonly encountered. Co-production of ‘KPC and OXA-48’, ‘KPC and VIM’, and ‘KPC and IMP’ was detected in three, nine, and seven isolates, respectively. Conclusion Our results confirm that the mCIM test is a useful tool for the reliable detection of carbapenemase activity in enterobacterial isolates, especially in clinical microbiological laboratories with limited resources.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
John Osei Sekyere ◽  
Melese Abate Reta

ABSTRACT Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including blaTEM-1, blaCTX-M, blaNDM, blaIMP, blaVIM, and blaOXA-48/181), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX3/4, ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited. IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance.


2017 ◽  
Vol 199 (10) ◽  
Author(s):  
Brittany L. Nairn ◽  
Olivia S. Eliasson ◽  
Dallas R. Hyder ◽  
Noah J. Long ◽  
Aritri Majumdar ◽  
...  

ABSTRACT Gram-negative bacteria acquire ferric siderophores through TonB-dependent outer membrane transporters (TBDT). By fluorescence spectroscopic hgh-throughput screening (FLHTS), we identified inhibitors of TonB-dependent ferric enterobactin (FeEnt) uptake through Escherichia coli FepA (EcoFepA). Among 165 inhibitors found in a primary screen of 17,441 compounds, we evaluated 20 in secondary tests: TonB-dependent ferric siderophore uptake and colicin killing and proton motive force-dependent lactose transport. Six of 20 primary hits inhibited TonB-dependent activity in all tests. Comparison of their effects on [59Fe]Ent and [14C]lactose accumulation suggested several as proton ionophores, but two chemicals, ebselen and ST0082990, are likely not proton ionophores and may inhibit TonB-ExbBD. The facility of FLHTS against E. coli led us to adapt it to Acinetobacter baumannii. We identified its FepA ortholog (AbaFepA), deleted and cloned its structural gene, genetically engineered 8 Cys substitutions in its surface loops, labeled them with fluorescein, and made fluorescence spectroscopic observations of FeEnt uptake in A. baumannii. Several Cys substitutions in AbaFepA (S279C, T562C, and S665C) were readily fluoresceinated and then suitable as sensors of FeEnt transport. As in E. coli, the test monitored TonB-dependent FeEnt uptake by AbaFepA. In microtiter format with A. baumannii, FLHTS produced Z′ factors 0.6 to 0.8. These data validated the FLHTS strategy against even distantly related Gram-negative bacterial pathogens. Overall, it discovered agents that block TonB-dependent transport and showed the potential to find compounds that act against Gram-negative CRE (carbapenem-resistant Enterobacteriaceae)/ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Our results suggest that hundreds of such chemicals may exist in larger compound libraries. IMPORTANCE Antibiotic resistance in Gram-negative bacteria has spurred efforts to find novel compounds against new targets. The CRE/ESKAPE pathogens are resistant bacteria that include Acinetobacter baumannii, a common cause of ventilator-associated pneumonia and sepsis. We performed fluorescence high-throughput screening (FLHTS) against Escherichia coli to find inhibitors of TonB-dependent iron transport, tested them against A. baumannii, and then adapted the FLHTS technology to allow direct screening against A. baumannii. This methodology is expandable to other drug-resistant Gram-negative pathogens. Compounds that block TonB action may interfere with iron acquisition from eukaryotic hosts and thereby constitute bacteriostatic antibiotics that prevent microbial colonization of human and animals. The FLHTS method may identify both species-specific and broad-spectrum agents against Gram-negative bacteria.


2021 ◽  
Vol 14 (4) ◽  
pp. 370
Author(s):  
Le Phuong Nguyen ◽  
Chul Soon Park ◽  
Naina Adren Pinto ◽  
Hyunsook Lee ◽  
Hyun Soo Seo ◽  
...  

The siderophore–antibiotic conjugate LCB10-0200 (a.k.a. GT-1) has been developed to combat multidrug-resistant Gram-negative bacteria. In this study, the in vitro activity of LCB10-0200 and LCB10-0200/avibactam (AVI) has been investigated against carbapenem-resistant Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Minimal inhibitory concentrations (MICs) of LCB10-0200, LCB10-0200/AVI, aztreonam, aztreonam/AVI, ceftazidime, ceftazidime/AVI, and meropenem were measured using the agar dilution method. Whole genome sequencing was performed using Illumina and the resistome was analyzed. LCB10-0200 displayed stronger activity than the comparator drugs in meropenem-resistant E. coli and K. pneumoniae, and the addition of AVI enhanced the LCB10-0200 activity to MIC ≤ 0.12 mg/L for 90.5% of isolates. In contrast, whereas LCB10-0200 alone showed potent activity against meropenem-resistant A. baumannii and P. aeruginosa at MIC ≤ 4 mg/L for 84.3% of isolates, the combination with AVI did not improve its activity. LCB10-0200/AVI was active against CTX-M-, SHV-, CMY-, and KPC- producing E. coli and K. pneumoniae, while LCB10-0200 alone was active against ADC-, OXA-, and VIM- producing A. baumannii and P. aeruginosa. Both LCB10-0200 and LCB10-0200/AVI displayed low activity against IMP- and NDM- producing strains. LCB10-0200 alone exhibited strong activity against selected strains. The addition of AVI significantly increased LCB10-0200 activity against carbapenem-resistant E. coli, K. pneumoniae.


2010 ◽  
Vol 54 (6) ◽  
pp. 2692-2695 ◽  
Author(s):  
Kim Credito ◽  
Klaudia Kosowska-Shick ◽  
Peter C. Appelbaum

ABSTRACT We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ß-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to ≥16. The MPC/MIC ratios for β-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 μg/ml) than those for ß-lactamase-negative strains.


2016 ◽  
Vol 60 (8) ◽  
pp. 4770-4777 ◽  
Author(s):  
Mariana Castanheira ◽  
Rodrigo E. Mendes ◽  
Ronald N. Jones ◽  
Helio S. Sader

ABSTRACTAmong 15,588Enterobacteriaceaeisolates collected in 63 U.S. hospitals from 2012 to 2014, 2,129 (13.7%) displayed an extended-spectrum β-lactamase (ESBL) phenotype. These rates were similar over time (13.2 to 13.9%); however, differences amongEscherichia coli(12.7 and 15.1% in 2012 and 2014;P= 0.007) andKlebsiella pneumoniae(18.9 and 15.5% in 2012 and 2014;P= 0.006) were noted when comparing 2014 and 2012. Carbapenem-resistantEnterobacteriaceae(CRE) (2.3 and 1.8%) and carbapenem-resistantK. pneumoniae(6.8 and 5.1%;P= 0.003) rates were lower in 2014 than in 2012. Isolates carryingblaCTX-M-15-like genes were stable (42.1 to 42.4%), but a decrease amongE. coliisolates (59.1 and 49.7%;P= 0.008) and an increase amongK. pneumoniaeisolates (32.7 and 41.2%;P= 0.022) in 2014 were observed. Isolates carryingblaKPC(304) decreased over the years (16.5 and 10.9%;P= 0.008), mainly due to the decrease inK. pneumoniaeisolates harboringblaKPC(n= 285; 35.6 and 28.4%;P= 0.041) in hospitals in the Mid-Atlantic and South Atlantic regions, where these isolates were highly prevalent during 2012 and 2013. Isolates carryingblaCMY-2-like andblaCTX-M-14-like genes increased (8.2 and 11.9% and 9.1 and 12.9%, respectively;P= 0.04 for both), and those producingblaSHVESBL decreased (24.9 and 12.7%;P< 0.001) over the studied years, due to a decreased occurrence of the enzymes amongK. pneumoniaeisolates. Other enzymes were detected in smaller numbers of isolates, including fourK. pneumoniaeisolates carryingblaNDM-1metallo-β-lactamase (two in 2012 and two in 2014). Ceftazidime-avibactam, a recently approved β-lactamase inhibitor combination, was very active against the ESBL phenotype isolates (MIC50/90, 0.12 and 1 μg/ml; 99.7% susceptible) and CRE strains (MIC50/90, 0.5 and 2 μg/ml; 98.5% susceptible) that displayed elevated MIC values for many comparator agents. In conclusion, significant changes were noted in the frequencies of isolates harboring various β-lactamases among U.S. hospitals between 2012 and 2014 that will require continued monitoring.


2013 ◽  
Vol 57 (12) ◽  
pp. 5808-5810 ◽  
Author(s):  
A. Stucki ◽  
F. Acosta ◽  
M. Cottagnoud ◽  
P. Cottagnoud

ABSTRACTIn this study, the efficacy of ceftaroline fosamil was compared with that of cefepime in an experimental rabbit meningitis model against two Gram-negative strains (Escherichia coliQK-9 andKlebsiella pneumoniae1173687). The penetration of ceftaroline into inflamed and uninflamed meninges was also investigated. Both regimens were bactericidal, but ceftaroline fosamil was significantly superior to cefepime againstK. pneumoniaeandE. coliin this experimental rabbit meningitis model (P< 0.0007 againstK. pneumoniaeandP< 0.0016 againstE. coli). The penetration of ceftaroline was approximately 15% into inflamed meninges and approximately 3% into uninflamed meninges.


Sign in / Sign up

Export Citation Format

Share Document