scholarly journals Efficacy of Ceftaroline Fosamil against Escherichia coli and Klebsiella pneumoniae Strains in a Rabbit Meningitis Model

2013 ◽  
Vol 57 (12) ◽  
pp. 5808-5810 ◽  
Author(s):  
A. Stucki ◽  
F. Acosta ◽  
M. Cottagnoud ◽  
P. Cottagnoud

ABSTRACTIn this study, the efficacy of ceftaroline fosamil was compared with that of cefepime in an experimental rabbit meningitis model against two Gram-negative strains (Escherichia coliQK-9 andKlebsiella pneumoniae1173687). The penetration of ceftaroline into inflamed and uninflamed meninges was also investigated. Both regimens were bactericidal, but ceftaroline fosamil was significantly superior to cefepime againstK. pneumoniaeandE. coliin this experimental rabbit meningitis model (P< 0.0007 againstK. pneumoniaeandP< 0.0016 againstE. coli). The penetration of ceftaroline was approximately 15% into inflamed meninges and approximately 3% into uninflamed meninges.

2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2014 ◽  
Vol 53 (3) ◽  
pp. 1031-1033 ◽  
Author(s):  
Baixing Ding ◽  
Fupin Hu ◽  
Yang Yang ◽  
Qinglan Guo ◽  
Jinwei Huang ◽  
...  

Carbapenem-resistantEscherichia coli,Klebsiella pneumoniae,Enterobacter aerogenes, andAcinetobacter baumanniiwere isolated from a single patient, each producing different carbapenemases (NDM-1, KPC-2, IMP, and OXA-23, respectively). The NDM-1-producingE. colistrain was preceded by a clonally related carbapenem-susceptible strain a month earlier, suggestingin vivoacquisition ofblaNDM-1.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Brian VanScoy ◽  
Daniel S. Taylor ◽  
Evelyn Ellis-Grosse ◽  
...  

ABSTRACT Fosfomycin is a broad-spectrum agent with activity against Gram-positive and Gram-negative bacteria, including drug-resistant strains, such as extended-spectrum-beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Gram-negative rods. In the present study, the pharmacokinetic/pharmacodynamic (PK/PD) activity of ZTI-01 (fosfomycin for injection) was evaluated in the neutropenic murine thigh infection model against 5 Escherichia coli, 3 Klebsiella pneumoniae, and 2 Pseudomonas aeruginosa strains, including a subset with ESBL and CR phenotypes. The pharmacokinetics of ZTI-01 were examined in mice after subcutaneous administration of 3.125, 12.5, 50, 200, 400, and 800 mg/kg of body weight. The half-life ranged from 0.51 to 1.1 h, area under the concentration-time curve (AUC0–∞) ranged from 1.4 to 87 mg · h/liter, and maximum concentrations ranged from 0.6 to 42.4 mg/liter. Dose fractionation demonstrated the AUC/MIC ratio to be the PK/PD index most closely linked to efficacy (R 2 = 0.70). Net stasis and bactericidal activity were observed against all strains. Net stasis was observed at 24-h AUC/MIC ratio values of 24, 21, and 15 for E. coli, K., pneumoniae and P. aeruginosa, respectively. For the Enterobacteriaceae group, stasis was noted at mean 24-h AUC/MIC ratio targets of 23 and 1-log kill at 83. Survival in mice infected with E. coli 145 was maximal at 24-h AUC/MIC ratio exposures of 9 to 43, which is comparable to the stasis exposures identified in the PK/PD studies. These results should prove useful for the design of clinical dosing regimens for ZTI-01 in the treatment of serious infections due to Enterobacteriaceae and Pseudomonas.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Delphine Girlich ◽  
Thierry Naas ◽  
Laurent Dortet

ABSTRACT The dissemination of carbapenemase-producing Enterobacteriaceae (CPE) has led to the increased use of colistin, which has resulted in the emergence of colistin-resistant Enterobacteriaceae worldwide. One of the most threatening scenarios is the dissemination of colistin resistance in CPE, particularly the plasmid-encoded resistance element MCR. Thus, it has now become mandatory to possess reliable media to screen for colistin-resistant Gram-negative bacterial isolates, especially Enterobacteriaceae. In this study, we evaluated the performances of the Superpolymyxin medium (ELITechGroup) and the ChromID Colistin R medium (bioMérieux) to screen for colistin-resistant Enterobacteriaceae from spiked rectal swabs. Stool samples were spiked with a total of 94 enterobacterial isolates (Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Enterobacter cloacae), including 53 colistin-resistant isolates. ESwabs (Copan Diagnostics) were then inoculated with those spiked fecal suspensions, and culture proceeded as recommended by both manufacturers. The sensitivity of detection of colistin-resistant Enterobacteriaceae was 86.8% (95% confidence interval [95% CI] = 74.0% to 94.0%) using both the Superpolymyxin medium and the ChromID Colistin R plates. Surprisingly, the isolates that were not detected were not the same for both media. The specificities were high for both media, at 97.9% (95% CI = 87.3% to 99.9%) for the Superpolymyxin medium and 100% (95% CI = 90.4% to 100%) for the ChromID Colistin R medium. Both commercially available media, ChromID Colistin R and Superpolymyxin, provide useful tools to screen for colistin-resistant Enterobacteriaceae from patient samples (rectal swabs) regardless of the level and mechanism of colistin resistance.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongxing Tian ◽  
Bingjie Wang ◽  
Hong Zhang ◽  
Fen Pan ◽  
Chun Wang ◽  
...  

ABSTRACT The continuous emergence of novel New Delhi metallo-β-lactamase-5 (NDM-5)-producing Enterobacteriaceae isolates is receiving more and more public attention. Twenty-two NDM-5-producing strains were identified from 146 carbapenemase-producing Enterobacteriaceae (CRE) strains isolated from pediatric patients between January and March 2017, indicating that the blaNDM-5 gene has spread to children. All 22 isolates, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, showed significantly high resistance to β-lactam antibiotics (except aztreonam) but remained susceptible to tigecycline and colistin. K. pneumoniae and K. aerogenes strains were respectively defined as homologous clonal isolates by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) results confirmed the genetic relatedness with all K. pneumoniae strains belonging to sequence type (ST) 48. Two E. coli isolates (ST617 and ST1236) were considered genetically unrelated. Twenty-two blaNDM-5 plasmids were positive for the IncX3 amplicon and showed almost identical profiles after digestion with HindIII and EcoRI. Four representative strains (K. pneumoniae K725, K. aerogenes CR33, E. coli Z214, and E. coli Z244) were selected for further study. Plasmids harboring blaNDM-5 showed strong stability in both clinical isolates and transconjugants, without apparent plasmid loss after 100 serial generations. S1-PFGE followed by Southern blot analysis demonstrated that the blaNDM-5 gene was located on an ∼46-kb plasmid. Plasmid sequences of pNDM-K725, pNDM-CR33, and pNDM-Z214 were almost identical but were slightly different from that of pNDM-Z244. Compared with pNDM-Z244, ΔISAba125 and partial copies of IS3000 were missing. The genetic backgrounds of the blaNDM-5 gene in four strains were slightly different from that of the typical pNDM_MGR194. This study comprehensively characterized the horizontal gene transfer of the blaNDM-5 gene among different Enterobacteriaceae isolates in pediatric patients, and the IncX3-type plasmid was responsible for the spread. IMPORTANCE The emergence of CRE strains resistant to multiple antibiotics is considered a substantial threat to human health. Therefore, all the efforts to provide a detailed molecular transmission mechanism of specific drug resistance can contribute positively to prevent the further spread of multidrug-resistant bacteria. Although the new superbug harboring blaNDM-5 has been reported in many countries, it was mostly identified among E. coli strains, and the gene transfer mechanism has not been fully recognized and studied. In this work, we identified 22 blaNDM-5-positive strains in different species of Enterobacteriaceae, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, which indicated the horizontal gene transfer of blaNDM-5 among Enterobacteriaceae strains in pediatric patients. Moreover, blaNDM-5 was located on a 46-kb IncX3 plasmid, which is possibly responsible for this widespread horizontal gene transfer. The different genetic contexts of the blaNDM-5 gene indicated some minor evolutions of the plasmid, based on the complete sequences of the blaNDM-5 plasmids. These findings are of great significance to understand the transmission mechanism of drug resistance genes, develop anti-infection treatment, and take effective infection control measures.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2012 ◽  
Vol 56 (6) ◽  
pp. 2888-2893 ◽  
Author(s):  
Nan-Yao Lee ◽  
Ching-Chi Lee ◽  
Wei-Han Huang ◽  
Ko-Chung Tsui ◽  
Po-Ren Hsueh ◽  
...  

ABSTRACTA retrospective study was conducted at two medical centers in Taiwan to evaluate the clinical characteristics, outcomes, and risk factors for mortality among patients treated with a carbapenem for bacteremia caused by extended-spectrum-beta-lactamase (ESBL)-producing organisms. A total of 251 patients with bacteremia caused by ESBL-producingEscherichia coliandKlebsiella pneumoniaeisolates treated by a carbapenem were identified. Among these ESBL-producing isolates, rates of susceptibility to ertapenem (MICs ≤ 0.25 μg/ml) were 83.8% and 76.4%, respectively; those to meropenem were 100% and 99.3%, respectively; and those to imipenem were 100% and 97.9%, respectively. There were no significant differences in the critical illness rate (P= 0.1) or sepsis-related mortality rate (P= 0.2) for patients with bacteremia caused by ESBL-producingK. pneumoniae(140 isolates, 55.8%) andE. coli(111 isolates, 44.2%). Multivariate analysis of variables related to sepsis-related mortality revealed that the presence of severe sepsis (odds ratio [OR], 15.9; 95% confidence interval [CI], 5.84 to 43.34;P< 0.001), hospital-onset bacteremia (OR, 4.65; 95% CI, 1.42 to 15.24;P= 0.01), and ertapenem-nonsusceptible isolates (OR, 5.12; 95% CI, 2.04 to 12.88;P= 0.001) were independent risk factors. The patients receiving inappropriate therapy had a higher sepsis-related mortality than those with appropriate therapy (P= 0.002), irrespective of ertapenem, imipenem, or meropenem therapy. Infections due to the ertapenem-susceptible isolates (MICs ≤ 0.25 μg/ml) were associated with a more favorable outcome than those due to ertapenem-nonsusceptible isolates (MICs > 0.25 μg/ml), if treated by a carbapenem. However, the mortality for patients with bacteremic episodes due to isolates with MICs of ≤0.5 μg/ml was similar to the mortality for those whose isolates had MICs of >0.5 μg/ml (P= 0.8). Such a finding supports the rationale of the current CLSI 2011 criteria for carbapenems forEnterobacteriaceae.


2019 ◽  
Vol 58 (3) ◽  
Author(s):  
Edgar Gonzales Escalante ◽  
Katherine Yauri Condor ◽  
Jose A. Di Conza ◽  
Gabriel O. Gutkind

ABSTRACT The aim of this work was to evaluate an easy-to-perform assay based upon inhibition of mobile colistin resistance (MCR) activity by EDTA. We included 92 nonrelated isolates of Enterobacteriaceae (74 Escherichia coli, 17 Klebsiella pneumoniae, and 1 Serratia marcescens). Our proposed method is based on a modification of the colistin agar-spot screening test (CAST), a plate containing 3 μg/ml colistin, by adding an extra plate of colistin agar-spot supplemented with EDTA (eCAST). Bacterial growth was evaluated after 24 h of incubation at 35°C. All the colistin-resistant isolates showed development on the CAST plates. Colistin-resistant K. pneumoniae without mcr-1 and S. marcescens also grew on the eCAST plates. In contrast, colistin-resistant MCR-producing E. coli was not able to grow in eCAST plates. The combined CAST/eCAST test could provide a simple and easy-to-perform method to differentiate MCR-producing Enterobacteriaceae from those in which colistin resistance is mediated by chromosomal mechanisms.


2013 ◽  
Vol 58 (2) ◽  
pp. 722-733 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
Hong-Suk Kim ◽  
Son T. Nguyen ◽  
Chad Houseweart ◽  
...  

ABSTRACTMembers of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC ofEscherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of theEnterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versusE. coliAB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) ofE. coliAB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active againstEnterobacteriaceaespecies andPseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.


Sign in / Sign up

Export Citation Format

Share Document