scholarly journals A Wild Yeast Laboratory Activity: From Isolation to Brewing

Author(s):  
Amanda N. Scholes ◽  
Erik D. Pollock ◽  
Jeffrey A. Lewis

Microbial fermentation is a common form of metabolism that has been exploited by humans to great benefit. Industrial fermentation currently produces a myriad of products ranging from biofuels to pharmaceuticals.

2019 ◽  
Author(s):  
Amanda N. Scholes ◽  
Erik D. Pollock ◽  
Jeffrey A. Lewis

AbstractMicrobial fermentation is a common form of metabolism that has been exploited by humans to great benefit. Industrial fermentation currently produces a myriad of products ranging from biofuels to pharmaceuticals. About one third of the world’s food is fermented, and the brewing of fermented beverages in particular has an ancient and storied history. Because fermentation is so intertwined with our daily lives, the topic is easily relatable to students interested in real-world applications for microbiology. Here, we describe the curriculum for an inquiry-based laboratory course that combines yeast molecular ecology and brewing. The rationale for the course is to compare commercial Saccharomyces cerevisiae yeast strains, which have been domesticated through thousands of generations of selection, with wild yeast, where there is growing interest in their potentially unique brewing characteristics. Because wild yeast are so easy to isolate, identify, and characterize, this is a great opportunity to present key concepts in molecular ecology and genetics in a way that is relevant and accessible to students. We organized the course around three main modules: isolation and identification of wild yeast, phenotypic characterization of wild and commercial ale yeast strains, and scientific design of a brewing recipe and head-to-head comparison of the performance of a commercial and wild yeast strain in the brewing process. Pre and post assessment showed that students made significant gains in the learning objectives for the course, and students enjoyed connecting microbiology to a real-world application.


2015 ◽  
pp. 209-216 ◽  
Author(s):  
Eduardo P. Borges ◽  
Mário L. Lopes ◽  
Claudemir Bernardino ◽  
Alexandre Godoy ◽  
Fernando E. Ré ◽  
...  

The authors’ work started in fermentation in 1977 and in the 1980’s into sugar production and cane quality. Statistical analysis was a key factor for the success of improving yield in ethanol and sugar production as well as cane quality. Adaption of methods for industrial laboratories also was very important in relation to yield and in reduction of sugar losses in the factory. Methodologies to measure sugar losses occurring through degradation in the factory (evaporation) using ion chromatography and dry substance content with a digital density meter were adapted. The fermentation yield improved from 75% in 1977 to 92% in 2014, which was possible by adapting methods for live bacterial counting within 20 min, and by controlling contamination using antimicrobial products through research in the laboratory and the industry. Since 1990 yeasts for industrial fermentation were selected by karyotyping analysis of the nuclear chromosomes and in the last seven years based on mitochondrial DNA. The last technique made the “Process Driven Selection” possible, i.e. one or several yeast strains which fit each distillery. Floc formation in carbonated beverages is not only due to the Indicator Value (discovery by SPRI research group) but also to aconitic acid and calcium under Brazilian conditions.


Author(s):  
Tran Thi Bao Le ◽  
Candice Divine-Ayela ◽  
Alberto Striolo ◽  
David R. Cole

Understanding the wetting properties of reservoir rocks can be of great benefit for advanced applications such as the effective trapping and geological storage of CO2. Despite their importance, not all...


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 44
Author(s):  
Mario Guadalupe-Daqui ◽  
Mandi Chen ◽  
Katherine A. Thompson-Witrick ◽  
Andrew J. MacIntosh

The kinetics and success of an industrial fermentation are dependent upon the health of the microorganism(s) responsible. Saccharomyces sp. are the most commonly used organisms in food and beverage production; consequently, many metrics of yeast health and stress have been previously correlated with morphological changes to fermentations kinetics. Many researchers and industries use machine vision to count yeast and assess health through dyes and image analysis. This study assessed known physical differences through automated image analysis taken throughout ongoing high stress fermentations at various temperatures (30 °C and 35 °C). Measured parameters included sugar consumption rate, number of yeast cells in suspension, yeast cross-sectional area, and vacuole cross-sectional area. The cell morphological properties were analyzed automatically using ImageJ software and validated using manual assessment. It was found that there were significant changes in cell area and ratio of vacuole to cell area over the fermentation. These changes were temperature dependent. The changes in morphology have implications for rates of cellular reactions and efficiency within industrial fermentation processes. The use of automated image analysis to quantify these parameters is possible using currently available systems and will provide additional tools to enhance our understanding of the fermentation process.


2021 ◽  
pp. 009862832110296
Author(s):  
Angy J. Kallarackal

Background: The goals of laboratory experiences include developing knowledge base, research skills, and scientific communication abilities. Objective: The aim was to assess an inquiry-based laboratory activity using the model organism Caenorhabditis elegans in relation to learning goals. Method: Students in a Biopsychology laboratory course worked in groups to test the effect of various drugs (e.g., nicotine, ethanol, fluoxetine, and melatonin) on C. elegans behavior. The activity included literature review, experimental design, and a final lab report. A cumulative final exam included a synaptic communication question related to the content of the activity. Results: Students showed better retention of laboratory-related content compared to other topics from the course, as demonstrated through performance on the final exam and were able to replicate previous research demonstrating effects of drug on locomotion. However, students did not improve writing ability compared to performance on a previous American Psychological Association style lab report. Conclusion: This study demonstrates that using a student-designed, multi-week laboratory assignment in an undergraduate Biopsychology course supports the growth of psychology knowledge and the development of research skills. Teaching Implications: Instructors should consider using the described laboratory activity for biopsychology or behavioral neuroscience classes or consider similarly designed laboratory formats for other courses in Psychology.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1472
Author(s):  
Cristian Vaquero ◽  
Iris Loira ◽  
Javier Raso ◽  
Ignacio Álvarez ◽  
Carlota Delso ◽  
...  

New nonthermal technologies, including pulsed electric fields (PEF), open a new way to generate more natural foods while respecting their organoleptic qualities. PEF can reduce wild yeasts to improve the implantation of other yeasts and generate more desired metabolites. Two PEF treatments were applied; one with an intensity of 5 kV/cm was applied continuously to the must for further colour extraction, and a second treatment only to the must (without skins) after a 24-hour maceration of 17.5 kV/cm intensity, reducing its wild yeast load by up to 2 log CFU/mL, thus comparing the implantation and fermentation of inoculated non-Saccharomyces yeasts. In general, those treated with PEF preserved more total esters and formed more anthocyanins, including vitisin A, due to better implantation of the inoculated yeasts. It should be noted that the yeast Lachancea thermotolerans that had received PEF treatment produced four-fold more lactic acid (3.62 ± 0.84 g/L) than the control of the same yeast, and Hanseniaspora vineae with PEF produced almost three-fold more 2-phenylethyl acetate than the rest. On the other hand, 3-ethoxy-1-propanol was not observed at the end of the fermentation with a Torulaspora delbrueckii (Td) control but in the Td PEF, it was observed (3.17 ± 0.58 mg/L).


Sign in / Sign up

Export Citation Format

Share Document