scholarly journals Leader of the Capsid Protein in Feline Calicivirus Promotes Replication of Norwalk Virus in Cell Culture

2008 ◽  
Vol 82 (19) ◽  
pp. 9306-9317 ◽  
Author(s):  
Kyeong-Ok Chang ◽  
David W. George ◽  
John B. Patton ◽  
Kim Y. Green ◽  
Stanislav V. Sosnovtsev

ABSTRACT The inability to grow human noroviruses in cell culture has greatly impeded the studies of their pathogenesis and immunity. Vesiviruses, in the family Caliciviridae, grow efficiently in cell culture and encode a unique protein in the subgenomic region designated as leader of the capsid protein (LC). We hypothesized that LC might be associated with the efficient replication of vesiviruses in cell culture and promote the replication of human norovirus in cells. To test this hypothesis, a recombinant plasmid was engineered in which the LC region of feline calicivirus (FCV) was placed under the control of the cytomegalovirus promoter (pCI-LC) so that the LC protein could be provided in trans to replicating calicivirus genomes bearing a reporter gene. We constructed pNV-GFP, a recombinant plasmid containing a full-length NV genome with a green fluorescent protein (GFP) in the place of VP1. The transfection of pNV-GFP in MVA-T7-infected cells produced few GFP-positive cells detected by fluorescence microscopy and flow cytometry analysis. When pNV-GFP was cotransfected with pCI-LC in MVA-T7-infected cells, we observed an increase in the number of GFP-positive cells (ca. 3% of the whole-cell population). Using this cotransfection method with mutagenesis study, we identified potential cis-acting elements at the start of subgenomic RNA and the 3′ end of NV genome for the virus replication. We conclude that LC may be a viral factor which promotes the replication of NV in cells, which could provide a clue to growing the fastidious human noroviruses in cell culture.

2001 ◽  
Vol 75 (16) ◽  
pp. 7528-7542 ◽  
Author(s):  
Matloob Husain ◽  
Bernard Moss

ABSTRACT The wrapping of intracellular mature vaccinia virions by modifiedtrans-Golgi or endosomal cisternae to form intracellular enveloped virions is dependent on at least two viral proteins encoded by the B5R and F13L open reading frames. B5R is a type I integral membrane glycoprotein, whereas F13L is an unglycosylated, palmitylated protein with a motif that is conserved in a superfamily of phospholipid-metabolizing enzymes. Microscopic visualization of the F13L protein was achieved by fusing it to the enhanced green fluorescent protein (GFP). F13L-GFP was functional when expressed by a recombinant vaccinia virus in which it replaced the wild-type F13L gene or by transfection of uninfected cells with a plasmid vector followed by infection with an F13L deletion mutant. In uninfected or infected cells, F13L-GFP was associated with Golgi cisternae and post-Golgi vesicles containing the LAMP 2 late endosomal-lysosomal marker. Association of F13L-GFP with vesicles was dependent on an intact phospholipase catalytic motif and sites of palmitylation. The B5R protein was also associated with LAMP2-containing vesicles when F13L-GFP was coexpressed, but was largely restricted to Golgi cisternae in the absence of F13L-GFP or when the F13L moiety was mutated. We suggest that the F13L protein, like its human phospholipase D homolog, regulates vesicle formation and that this process is involved in intracellular enveloped virion membrane formation.


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Christopher L. Case ◽  
Craig R. Roy

ABSTRACTNucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) activate caspase-1 in response to a variety of bacterium-derived signals in macrophages. NLR-mediated activation of caspase-1 byLegionella pneumophilaoccurs through both an NLRC4/NAIP5-dependent pathway and a pathway requiring the adapter protein Asc. Both pathways are needed for maximal activation of caspase-1 and for the release of the cytokines interleukin-1β (IL-1β) and IL-18. Asc is not required for caspase-1-dependent pore formation and cell death induced upon infection of macrophages byL. pneumophila. Here, temporal and spatial localization of caspase-1-dependent processes was examined to better define the roles of Asc and NLRC4 during infection. Imaging studies revealed that caspase-1 localized to a single punctate structure in infected cells containing Asc but not in cells lacking this adapter. Both endogenous Asc and ectopically produced NLRC4 tagged with green fluorescent protein (GFP) were found to localize to caspase-1 puncta followingL. pneumophilainfection, suggesting that NLRC4 and Asc coordinate signaling through this complex during caspase-1 activation. Formation of caspase-1-containing puncta correlated with caspase-1 processing, suggesting a role for the Asc/NLRC4/caspase-1 complex in caspase-1 cleavage. In cells deficient for Asc, NLRC4 did not assemble into discrete puncta, and pyroptosis occurred at an accelerated rate. These data indicate that Asc mediates integration of NLR components into caspase-1 processing platforms and that recruitment of NLR components into an Asc complex can dampen pyroptotic responses. Thus, a negative feedback role of complexes containing Asc may be important for regulating caspase-1-mediated responses during microbial infection.IMPORTANCECaspase-1 is a protease activated during infection that is central to the regulation of several innate immune pathways. Studies examining the macromolecular complexes containing this protein, known as inflammasomes, have provided insight into the regulation of this protease. This work demonstrates that the intracellular bacteriumLegionella pneumophilainduces formation of complexes containing caspase-1 by multiple mechanisms and illustrates that an adapter molecule called Asc integrates signals from multiple independent upstream caspase-1 activators in order to assemble a spatially distinct complex in the macrophage. There were caspase-1-associated activities such as cytokine processing and secretion that were controlled by Asc. Importantly, this work uncovered a new role for Asc in dampening a caspase-1-dependent cell death pathway called pyroptosis. These findings suggest that Asc plays a central role in controlling a distinct subset of caspase-1-dependent activities by both assembling complexes that are important for cytokine processing and suppressing processes that mediate pyroptosis.


2021 ◽  
Author(s):  
Pehuen Pereyra Gerber ◽  
Lidia M Duncan ◽  
Edward JD Greenwood ◽  
Sara Marelli ◽  
Adi Naamati ◽  
...  

The world is in the grip of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and there is an urgent unmet clinical need for effective antiviral therapies. Many inhibitors of viral enzymes identified in vitro have limited efficacy against viral replication in cells, but conventional plaque assays are impractical for high-throughput screens. In this study, we therefore engineer cell-based biosensors of SARS-CoV-2 infection. Our assays exploit the cleavage of specific oligopeptide linkers by SARS-CoV-2 Main or Papain-like proteases, leading to the activation of green fluorescent protein (GFP) or firefly luciferase-based reporters. First, we characterise these biosensors in cells using recombinant viral proteases. Next, we confirm their ability to detect endogenous viral protease expression during infection with wildtype SARS-CoV-2. Finally, we develop a sensitive luminescent reporter cell line, confirm that it accurately quantitates infectious SARS-CoV-2 virus, and demonstrate its utility for drug screening and titration of neutralising antibodies.


2020 ◽  
Vol 26 (2) ◽  
pp. 267-274
Author(s):  
Jason J. Saredy ◽  
Florence Y. Chim ◽  
Zoë L. Lyski ◽  
Yani P. Ahearn ◽  
Doria F. Bowers

AbstractBiological transmission of arthropod-borne viruses (arboviruses) to vertebrate hosts by hematophagous insects poses a global threat because such arboviruses can result in a range of serious public health infectious diseases. Sindbis virus (SINV), the prototype Alphavirus, was used to track infections in the posterior midgut (PMG) of Aedes aegypti adult mosquitoes. Females were fed viremic blood containing a virus reporter, SINV [Thosea asigna virus-green fluorescent protein (TaV-GFP)], that leaves a fluorescent signal in infected cells. We assessed whole-mount PMGs to identify primary foci, secondary target tissues, distribution, and virus persistence. Following a viremic blood meal, PMGs were dissected and analyzed at various days of post blood-feeding. We report that virus foci indicated by GFP in midgut epithelial cells resulted in a 9.8% PMG infection and a 10.8% dissemination from these infected guts. The number of virus foci ranged from 1 to 3 per individual PMG and was more prevalent in the PMG-middle > PMG-frontal > PMG-caudal regions. SINV TaV-GFP was first observed in the PMG (primary target tissue) at 3 days post blood-feeding, was sequestered in circumscribed foci, replicated in PMG peristaltic muscles (secondary target tissue) following dissemination, and GFP was observed to persist in PMGs for 30 days postinfection.


2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Prerna Vohra ◽  
Christina Vrettou ◽  
Jayne C. Hope ◽  
John Hopkins ◽  
Mark P. Stevens

AbstractSalmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity.


2004 ◽  
Vol 78 (4) ◽  
pp. 1657-1664 ◽  
Author(s):  
Ngan Lam ◽  
Mark L. Sandberg ◽  
Bill Sugden

ABSTRACT LMP1 is an Epstein-Barr virus (EBV)-encoded membrane protein essential for the proliferation of EBV-infected lymphoblasts (E. Kilger, A. Kieser, M. Baumann, and W. Hammerschmidt, EMBO J. 17:1700-1709, 1998). LMP1 also inhibits gene expression and induces cytostasis in transfected cells when it is expressed at levels as little as twofold higher than the average for EBV-positive lymphoblasts (M. Sandberg, A. Kaykas, and B. Sugden, J. Virol. 74:9755-9761, 2000; A. Kaykas and B. Sugden, Oncogene 19:1400-1410, 2000). We have found that in three different clones of EBV-infected lymphoblasts the levels of expression of LMP1 in individual cells in each clone ranged over 100-fold. This difference is due to a difference in levels of the LMP1 transcript. In these clones, cells expressing high levels of LMP1 incorporated less BrdU. We also found that induction of expression of LMP1 or of a derivative of LMP1 with its transmembrane domain fused to green fluorescent protein instead of its carboxy-terminal signaling domain resulted in phosphorylation of eIF2α in EBV-negative Burkitt's lymphoma cells. This induction of phosphorylation of eIF2α was also detected in EBV-infected lymphoblasts, in which high levels of LMP1 correlated with high levels of phosphorylation of eIF2α. Our results indicate that inhibition of gene expression and of cell proliferation by LMP1 occurs normally in EBV-infected cells.


2006 ◽  
Vol 50 (8) ◽  
pp. 2806-2813 ◽  
Author(s):  
T. Ueno ◽  
Y. Eizuru ◽  
H. Katano ◽  
T. Kurata ◽  
T. Sata ◽  
...  

ABSTRACT Promyelocytic leukemia (PML) bodies are discrete nuclear foci that are intimately associated with many DNA viruses. In human cytomegalovirus (HCMV) infection, the IE1 (for “immediate-early 1”) protein has a marked effect on PML bodies via de-SUMOylation of PML protein. Here, we report a novel real-time monitoring system for HCMV-infected cells using a newly established cell line (SE/15) that stably expresses green fluorescent protein (GFP)-PML protein. In SE/15 cells, HCMV infection causes specific and efficient dispersion of GFP-PML bodies in an IE1-dependent manner, allowing the infected cells to be monitored by fluorescence microscopy without immunostaining. Since a specific change in the detergent solubility of GFP-PML occurs upon infection, the infected cells can be quantified by GFP fluorescence measurement after extraction. With this assay, the inhibitory effects of heparin and neutralizing antibodies were determined in small-scale cultures, indicating its usefulness for screening inhibitory reagents for laboratory virus strains. Furthermore, we established a sensitive imaging assay by counting the number of nuclei containing dispersed GFP-PML, which is applicable for titration of slow-growing clinical isolates. In all strains tested, the virus titers estimated by the GFP-PML imaging assay were well correlated with the plaque-forming cell numbers determined in human embryonic lung cells. Coculture of SE/15 cells and HCMV-infected fibroblasts permitted a rapid and reliable method for estimating the 50% inhibitory concentration values of drugs for clinical isolates in susceptibility testing. Taken together, these results demonstrate the development of a rapid, sensitive, quantitative, and specific detection system for HCMV-infected cells involving a simple procedure that can be used for titration of low-titer clinical isolates.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Yuichi Matsuura ◽  
Yukinobu Tohya ◽  
Mihoko Onuma ◽  
Frank Roerink ◽  
Masami Mochizuki ◽  
...  

The ORF2 product of canine calicivirus (CaCV) was identified and its processing in mammalian cells was analysed. Immunoblot analysis revealed the presence of the 75 kDa capsid precursor in addition to a 57 kDa capsid protein and a 22 kDa N-terminal polypeptide in CaCV-infected cells treated at an elevated temperature. When the CaCV ORF2 was expressed in a transient mammalian expression system, only the 75 kDa precursor was detected in immunoblot analysis, suggesting that no post-translational processing occurred in this system. However, the precursor was processed to a 57 kDa protein and a 22 kDa polypeptide by the proteinase of feline calicivirus (FCV) when this was co-expressed with ORF2. Processing was blocked by site-directed mutagenesis of the putative cleavage site in the capsid precursor. The results indicate that the proteinase of FCV can cleave the capsid precursor of CaCV to produce the mature capsid protein and that CaCV may have a similar proteinase.


2000 ◽  
Vol 84 (2) ◽  
pp. 1062-1075 ◽  
Author(s):  
H. Nadeau ◽  
S. McKinney ◽  
D. J. Anderson ◽  
H. A. Lester

Lentiviral vectors were constructed to express the weakly rectifying kidney K+ channel ROMK1 (Kir1.1), either fused to enhanced green fluorescent protein (EGFP) or as a bicistronic message (ROMK1-CITE-EGFP). The channel was stably expressed in cultured rat hippocampal neurons. Infected cells were maintained for 2–4 wk without decrease in expression level or evidence of viral toxicity, although 15.4 mM external KCl was required to prevent apoptosis of neurons expressing functional ROMK1. No other trophic agents tested could prevent cell death, which was probably caused by K+loss. This cell death did not occur in glia, which were able to support ROMK1 expression indefinitely. Functional ROMK1, quantified as the nonnative inward current at −144 mV in 5.4 mM external K+blockable by 500 μM Ba2+, ranged from 1 to 40 pA/pF. Infected neurons exhibited a Ba2+-induced depolarization of 7 ± 2 mV relative to matched EGFP-infected controls, as well as a 30% decrease in input resistance and a shift in action potential threshold of 2.6 ± 0.5 mV. This led to a shift in the relation between injected current and firing frequency, without changes in spike shape, size, or timing. This shift, which quantifies silencing as a function of ROMK1 expression, was predicted from Hodgkin-Huxley models. No cellular compensatory mechanisms in response to expression of ROMK1 were identified, making ROMK1 potentially useful for transgenic studies of silencing and neurodegeneration, although its lethality in normal K+ has implications for the use of K+ channels in gene therapy.


2007 ◽  
Vol 81 (10) ◽  
pp. 5046-5057 ◽  
Author(s):  
Svetlana Atasheva ◽  
Rodion Gorchakov ◽  
Robert English ◽  
Ilya Frolov ◽  
Elena Frolova

ABSTRACT Sindbis virus (SINV) is one of almost 30 currently known alphaviruses. In infected cells, it produces only a few proteins that function in virus replication and interfere with the development of the antiviral response. One of the viral nonstructural proteins, nsP2, not only exhibits protease and RNA helicase activities that are directly involved in viral RNA replication but also plays critical roles in the development of transcriptional and translational shutoffs in the SINV-infected cells. These multiple activities of nsP2 complicate investigations of this protein's functions and further understanding of its structure. Using a transposon-based approach, we generated a cDNA library of SINV genomes with a green fluorescent protein (GFP) gene randomly inserted into nsP2 and identified a number of sites that can be used for GFP cloning without a strong effect on virus replication. Recombinant SIN viruses encoding nsP2/GFP chimeric protein were capable of growth in tissue culture and interfering with cellular functions. SINV, expressing GFP in the nsP2, was used to isolate nsP2-specific protein complexes formed in the cytoplasm of the infected cells. These complexes contained viral nsPs, all of the cellular proteins that we previously coisolated with SINV nsP3, and some additional protein factors that were not found before in detectable concentrations. The random insertion library-based approach, followed by the selection of the viable variants expressing heterologous proteins, can be applied for mapping the domain structure of the viral nonstructural and structural proteins, cloning of peptide tags for isolation of the protein-specific complexes, and studying their formation by using live-cell imaging. This approach may also be applicable to presentation of additional antigens and retargeting of viruses to new receptors.


Sign in / Sign up

Export Citation Format

Share Document