scholarly journals Transmission of a New Polerovirus Infecting Pepper by the WhiteflyBemisia tabaci

2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Saptarshi Ghosh ◽  
Surapathrudu Kanakala ◽  
Galina Lebedev ◽  
Svetlana Kontsedalov ◽  
David Silverman ◽  
...  

ABSTRACTMany animal and plant viruses depend on arthropods for their transmission. Virus-vector interactions are highly specific, and only one vector or one of a group of vectors from the same family is able to transmit a given virus. Poleroviruses (Luteoviridae) are phloem-restricted RNA plant viruses that are exclusively transmitted by aphids. Multiple aphid-transmitted polerovirus species commonly infect pepper, causing vein yellowing, leaf rolling, and fruit discoloration. Despite low aphid populations, a recent outbreak with such severe symptoms in many bell pepper farms in Israel led to reinvestigation of the disease and its insect vector. Here we report that this outbreak was caused by a new whitefly (Bemisia tabaci)-transmitted polerovirus, which we named Pepper whitefly-borne vein yellows virus (PeWBVYV). PeWBVYV is highly (>95%) homologous toPepper vein yellows virus(PeVYV) from Israel and Greece on its 5′ end half, while it is homologous toAfrican eggplant yellows virus(AeYV) on its 3′ half. Koch's postulates were proven by constructing a PeWBVYV infectious clone causing the pepper disease, which was in turn transmitted to test pepper plants byB. tabacibut not by aphids. PeWBVYV represents the first report of a whitefly-transmitted polerovirus.IMPORTANCEThe high specificity of virus-vector interactions limits the possibility of a given virus changing vectors. Our report describes a new virus from a family of viruses strictly transmitted by aphids which is now transmitted by whiteflies (Bemisia tabaci) and not by aphids. This report presents the first description of polerovirus transmission by whiteflies. Whiteflies are highly resistant to insecticides and disperse over long distances, carrying virus inoculum. Thus, the report of such unusual polerovirus transmission by a supervector has extensive implications for the epidemiology of the virus disease, with ramifications concerning the international trade of agricultural commodities.

1951 ◽  
Vol 83 (8) ◽  
pp. 194-205 ◽  
Author(s):  
J. H. H. Phillips

A study of the insect inhabitants of the sour cherry orchards of the Niagara district of Ontario was begun in the spring of 1947, ass part of an investigation of virus diseases of stone fruits carried on cooperatively between the Dominion Entomological Laboratory at Vineland Station and the Dominion Laboratory of Plant Pathology at St. Catharines. The virus disease cherry yellows of sour cherry had by that time become prevalent and appeared to be spreading rapidly. The rate and pattern of spread revealed by a survey of orchards suggested that an insect vector may be involved in the dissemination of the virus. The Hemiptera were chosen as the first group for study because most of the known vectors of plant viruses belong to this order.


2019 ◽  
Vol 109 (05) ◽  
pp. 604-611 ◽  
Author(s):  
L.S. Pereira ◽  
A.L. Lourenção ◽  
F.J.S. Salas ◽  
J.M.S. Bento ◽  
J.A.M. Rezende ◽  
...  

AbstractInsect-borne plant viruses usually alter the interactions between host plant and insect vector in ways conducive to their transmission (‘host manipulation hypothesis’). Most studies have tested this hypothesis with persistently and non-persistently transmitted viruses, while few have examined semi-persistently transmitted viruses. The crinivirus Tomato chlorosis virus (ToCV) is semi-persistently transmitted virus by whiteflies, and has been recently reported infecting potato plants in Brazil, where Bemisia tabaci Middle East Asia Minor 1 (MEAM1) is a competent vector. We investigated how ToCV infection modifies the interaction between potato plants and B. tabaci in ways that increase the likelihood of ToCV transmission, in two clones, one susceptible (‘Agata’) and the other moderately resistant (Bach-4) to B. tabaci. Whiteflies alighted and laid more eggs on ToCV-infected plants than mock-inoculated plants of Bach-4. When non-viruliferous whiteflies were released on ToCV-infected plants near mock-inoculated plants, adults moved more intensely towards non-infected plants than in the reverse condition for both clones. Feeding on ToCV-infected plants reduced egg-incubation period in both clones, but the egg–adult cycle was similar for whiteflies fed on ToCV-infected and mock-inoculated plants. Our results demonstrated that ToCV infection in potato plants alters B. tabaci behaviour and development in distinct ways depending on the host clone, with potential implications for ToCV spread.


2021 ◽  
Vol 66 (1) ◽  
pp. 389-405
Author(s):  
Xiao-Wei Wang ◽  
Stéphane Blanc

Of the approximately 1,200 plant virus species that have been described to date, nearly one-third are single-stranded DNA (ssDNA) viruses, and all are transmitted by insect vectors. However, most studies of vector transmission of plant viruses have focused on RNA viruses. All known plant ssDNA viruses belong to two economically important families, Geminiviridae and Nanoviridae, and in recent years, there have been increased efforts to understand whether they have evolved similar relationships with their respective insect vectors. This review describes the current understanding of ssDNA virus–vector interactions, including how these viruses cross insect vector cellular barriers, the responses of vectors to virus circulation, the possible existence of viral replication within insect vectors, and the three-way virus–vector–plant interactions. Despite recent breakthroughs in our understanding of these viruses, many aspects of plant ssDNA virus transmission remain elusive. More effort is needed to identify insect proteins that mediate the transmission of plant ssDNA viruses and to understand the complex virus–insect–plant three-way interactions in the field during natural infection.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 562
Author(s):  
Daniel K. Hasegawa ◽  
Md Shamimuzzaman ◽  
Wenbo Chen ◽  
Alvin M. Simmons ◽  
Zhangjun Fei ◽  
...  

The whitefly Bemisia tabaci (Gennadius) is a notorious insect vector that transmits hundreds of plant viruses, affecting food and fiber crops worldwide, and results in the equivalent of billions of U.S. dollars in crop loss annually. To gain a better understanding of the mechanism in virus transmission, we conducted deep sequencing of small RNAs on the whitefly B. tabaci MEAM1 (Middle East-Asia Minor 1) that fed on tomato plants infected with tomato yellow leaf curl virus (TYLCV). Overall, 160 miRNAs were identified, 66 of which were conserved and 94 were B. tabaci-specific. Among the B. tabaci-specific miRNAs, 67 were newly described in the present study. Two miRNAs, with predicted targets encoding a nuclear receptor (Bta05482) and a very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2 (Bta10702), respectively, were differentially expressed in whiteflies that fed on TYLCV-infected versus uninfected plants. To better understand the regulatory effects of identified miRNAs and their target genes, we correlated expression profiles of miRNAs and their target transcripts and found that, interestingly, miRNA expression was inversely correlated with the expression of ~50% of the predicted target genes. These analyses could serve as a model to study gene regulation in other systems involving arthropod transmission of viruses to plants and animals.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nathalie Becker ◽  
Loup Rimbaud ◽  
Frédéric Chiroleu ◽  
Bernard Reynaud ◽  
Gaël Thébaud ◽  
...  

Author(s):  
M. Swathi ◽  
Neeta Gaur ◽  
Kamendra Singh

Background: Whitefly is one of the most destructive sucking pest in the tropical and subtropical regions of the world and causing significant crop losses directly by sucking sap from the plants and indirectly through the transmission of viral diseases specifically caused by the genus Begomovirus. The Begomovirus species viz., Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) are causing yellow mosaic virus disease in soybean, which is transmitted by whiteflies. The disease accounts to 30-70 per cent yield loss and increases up to 80 - 100 per cent during severe incidence. Hence, there is a need for development of integrated pest management strategies against disease and whiteflies, for this the knowledge on virus-vector relationship is required. But, the studies on biological relationship of yellow mosaic virus disease and whitefly in soybean are scarce. At this juncture, considering the importance of disease in soybean, the present investigation was carried out to know the virus -vector relationship of the YMV and whitefly in soybean.Methods: The experiment on virus-vector relationship of yellow mosaic virus and whitefly in soybean was conducted at Department of Entomology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand during 2016-17. The data on number of whiteflies per plant, acquisition and inoculation access feeding period and pre and post starvation period required for effective transmission of virus was recorded.Result: A single viruliferous whitefly was able to transmit virus and ten viruliferous whiteflies per plant were required for cent per cent transmission of virus. The minimum acquisition access and inoculation access feeding periods required for virus transmission was 0.25h (15 min) each; while the 100 per cent virus transmission was recorded with acquisition and inoculation period of 12h, each. The per cent transmission was increased with the increase of acquisition and inoculation periods. The rate of transmission was positively correlated with pre-acquisition starvation period and negatively correlated with post- acquisition starvation period.


Parasitology ◽  
1946 ◽  
Vol 37 (1-2) ◽  
pp. 21-24 ◽  
Author(s):  
Kenneth M. Smith

An account is given of a composite virus disease of tobacco for which the name tobacco rosette has been suggested.The two component viruses, named the mottle and vein-distorting viruses respectively, have been separated, and their symptomatology and methods of transmission described. The mottle virus is both sap and aphis-transmitted, but the vein-distorting virus is aphis-borne only.The symptoms and histopathology of the complex disease in the tobacco plant are dealt with in some detail. There are three main types of symptoms: (1) intense rosetting, (2) splitting of the tissues, (3) formation of enations on the under-surface of the leaves.The splitting of the tissues has been examined microscopically, and a number of photomicrographs are given illustrating the formation of the fissures. It is suggested that there is a concentration of virus in the cambium which prevents the formation of the normal xylem. Abnormal tissue and giant cells are formed in the cortex and pith. This appears to set up stresses which cause the splitting.The insect vector of the complex disease is the aphis Myzus persicae Sulz. Another aphis, M. pseudosolani Theob., is also a vector but is less efficient than M. persicae.The writer's thanks are due to Prof. F. T. Brooks, F.R.S., with whom he discussed the histopathology of the rosette disease, to Dr Roy Markham for taking the photographs illustrating Pl. I, figs. 2–5, and to Mr Charles Harpley of the Molteno Institute for his assistance in taking' the photomicrographs.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1808
Author(s):  
Saptarshi Ghosh ◽  
Murad Ghanim

Many plant viruses depend on insect vectors for their transmission and dissemination. The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important virus vectors, transmitting more than four hundred virus species, the majority belonging to begomoviruses (Geminiviridae), with their ssDNA genomes. Begomoviruses are transmitted by B. tabaci in a persistent, circulative manner, during which the virus breaches barriers in the digestive, hemolymph, and salivary systems, and interacts with insect proteins along the transmission pathway. These interactions and the tissue tropism in the vector body determine the efficiency and specificity of the transmission. This review describes the mechanisms involved in circulative begomovirus transmission by B. tabaci, focusing on the most studied virus in this regard, namely the tomato yellow leaf curl virus (TYLCV) and its closely related isolates. Additionally, the review aims at drawing attention to the recent knowhow of unorthodox virus—B. tabaci interactions. The recent knowledge of whitefly-mediated transmission of two recombinant poleroviruses (Luteoviridae), a virus group with an ssRNA genome and known to be strictly transmitted with aphids, is discussed with its broader context in the emergence of new whitefly-driven virus diseases.


2016 ◽  
Vol 82 (6) ◽  
pp. 1966-1975 ◽  
Author(s):  
Christelle Lacroix ◽  
Kurra Renner ◽  
Ellen Cole ◽  
Eric W. Seabloom ◽  
Elizabeth T. Borer ◽  
...  

ABSTRACTEcological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally importantBarley yellow dwarf virusPAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts.


Sign in / Sign up

Export Citation Format

Share Document