scholarly journals HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+T Lymphocytes

2015 ◽  
Vol 89 (10) ◽  
pp. 5687-5700 ◽  
Author(s):  
Lia Vassena ◽  
Erica Giuliani ◽  
Herwig Koppensteiner ◽  
Sebastian Bolduan ◽  
Michael Schindler ◽  
...  

ABSTRACTLeukocyte recirculation between blood and lymphoid tissues is required for the generation and maintenance of immune responses against pathogens and is crucially controlled by the L-selectin (CD62L) leukocyte homing receptor. CD62L has adhesion and signaling functions and initiates the capture and rolling on the vascular endothelium of cells entering peripheral lymph nodes. This study reveals that CD62L is strongly downregulated on primary CD4+T lymphocytes upon infection with human immunodeficiency virus type 1 (HIV-1). Reduced cell surface CD62L expression was attributable to the Nef and Vpu viral proteins and not due to increased shedding via matrix metalloproteases. Both Nef and Vpu associated with and sequestered CD62L in perinuclear compartments, thereby impeding CD62L transport to the plasma membrane. In addition, Nef decreased total CD62L protein levels. Importantly, infection with wild-type, but not Nef- and Vpu-deficient, HIV-1 inhibited the capacity of primary CD4+T lymphocytes to adhere to immobilized fibronectin in response to CD62L ligation. Moreover, HIV-1 infection impaired the signaling pathways and costimulatory signals triggered in primary CD4+T cells by CD62L ligation. We propose that HIV-1 dysregulates CD62L expression to interfere with the trafficking and activation of infected T cells. Altogether, this novel HIV-1 function could contribute to virus dissemination and evasion of host immune responses.IMPORTANCEL-selectin (CD62L) is an adhesion molecule that mediates the first steps of leukocyte homing to peripheral lymph nodes, thus crucially controlling the initiation and maintenance of immune responses to pathogens. Here, we report that CD62L is downmodulated on the surfaces of HIV-1-infected T cells through the activities of two viral proteins, Nef and Vpu, that prevent newly synthesized CD62L molecules from reaching the plasma membrane. We provide evidence that CD62L downregulation on HIV-1-infected primary T cells results in impaired adhesion and signaling functions upon CD62L triggering. Removal of cell surface CD62L may predictably keep HIV-1-infected cells away from lymph nodes, the privileged sites of both viral replication and immune response activation, with important consequences, such as systemic viral spread and evasion of host immune surveillance. Altogether, we propose that Nef- and Vpu-mediated subversion of CD62L function could represent a novel determinant of HIV-1 pathogenesis.

1994 ◽  
Vol 40 (11) ◽  
pp. 2128-2131 ◽  
Author(s):  
T W Mak

Abstract T lymphocytes recognize antigen peptides and major histocompatibility complex products through their T-cell antigen receptors (TcR), consisting of alpha and beta chains. The interaction between T cells and their target cells or antigen-presenting cells is also assisted by a series of other cell-surface polypeptides, most notably CD4 and CD8, which are selectively expressed on mature helper/inducer and killer/suppressor T cells, respectively. Upon engagement of their ligands, a series of signals is transduced intracytoplasmically via some of these molecules and their associated proteins. Perhaps the most important enzyme in this signal transduction process is the lymphocyte-specific tyrosine kinase lck. Another important component is the cell-surface tyrosine phosphatase CD45. This molecule is alternatively spliced and the different isoforms are expressed on the various hematopoietic and lymphopoietic cells. Signaling through the TcR-CD4 D8-lck-CD45 complex is thought to be insufficient to activate T lymphocytes. A costimulatory signal is believed to be essential, and many investigators have suggested that CD28, a ligand for B7/BB1, is such a signal. Immune responses are also controlled by a number of cytokines and soluble factors. Signaling through the tumor necrosis factor receptor p55 is required for clearance of intracellular pathogens. Transcriptional factors involved in controlling interferon production are also important in T-cell development and immune responses. In an attempt to gain a better understanding of the roles of these molecules in T-lymphocyte functions and ontogeny, we generated a series of mutant mice with disruptions in the genes coding for these molecules. We are analyzing the mutant mice to evaluate the importance of these genes in T-cell development.


Author(s):  
Yoshihiko Yamamoto ◽  
Rajendra Pahwa ◽  
Savita Pahwa

AbstractThe expression of CXCR4, a membrane protein which is involved in the entry of HIV-1, is down-modulated from the cell surface by Phorbol 12-myristate 13-acetate (PMA) and the Ca+ ionophore, Ionomycin. Inducible co-stimulator (ICOS), which contributes to lymphocyte proliferation, is up-regulated by PMA/Ionomycin. We examined the influence of S-nitrosoglutathione (SNG), an inhibitor of Vacuolar H+-ATPase (V-ATPase), on the expression of CXCR4 and ICOS in PMA/Ionomycin-treated peripheral mononuclear cells (PBMC), and of CXCR4 alone in lymphoid cell lines. In this report, we show that SNG interferes with both effects of PMA/Ionomycin, namely CXCR4 down-regulation and ICOS up-regulation. These studies imply opposing roles of V-ATPase in the regulation of CXCR4 and ICOS. The influence of SNG in modulating the susceptibility of T cells to HIV-1 and on their immune responses needs further investigation.


2011 ◽  
Vol 22 (8) ◽  
pp. 1148-1166 ◽  
Author(s):  
Laura García-Expósito ◽  
Jonathan Barroso-González ◽  
Isabel Puigdomènech ◽  
José-David Machado ◽  
Julià Blanco ◽  
...  

As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry.


2015 ◽  
Vol 90 (6) ◽  
pp. 2928-2937 ◽  
Author(s):  
Ai-Ping Jiang ◽  
Jin-Feng Jiang ◽  
Ji-Fu Wei ◽  
Ming-Gao Guo ◽  
Yan Qin ◽  
...  

ABSTRACTThe gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viraltrans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection.IMPORTANCEIn this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1trans-infection of CD4+T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.


Reproduction ◽  
2021 ◽  
Author(s):  
Amir Salek Farrokhi ◽  
Amir-Hassan Zarnani ◽  
Fatemeh Rezaei kahmini ◽  
Seyed Mohammad Moazzeni

Recurrent pregnancy loss (RPL) is one of the most common complications of early pregnancy associated in most cases with local or systemic immune abnormalities such as the diminished proportion of regulatory T cells (Tregs). Mesenchymal stem cells (MSCs) have been shown to modulate immune responses by de novo induction and expansion of Tregs. In this study, we analyzed the molecular and cellular mechanisms involved in Treg-associated pregnancy protection following MSCs administration in an abortion-prone mouse mating. In a case-control study, syngeneic abdominal fat-derived MSCs were administered intraperitoneally (i.p) to the DBA/2-mated CBA/J female mice on day 4.5 of pregnancy. Abortion rate, Tregs proportion in spleen and inguinal lymph nodes, and Ho1, Foxp3, Pd1, and Ctla4 genes expression at the feto-maternal interface were then measured on day 13.5 of pregnancy using flow cytometry and quantitative RT- PCR, respectively. The abortion rate in MSCs-treated mice was significantly reduced and normalized to the level observed in normal pregnant animals. We demonstrated a significant induction of Tregs in inguinal lymph nodes but not in the spleen following MSCs administration. Administration of MSCs remarkably upregulated the expression of HO1, Foxp3, Pd1, and Ctla4 genes in both placenta and decidua. Here, we show that MSCs therapy could protect the fetus in the abortion-prone mice through Tregs expansion and up-regulation of Treg-related genes. These events could establish an immune-privileged microenvironment, which participates in regulation of detrimental maternal immune responses against the semi-allogeneic fetus.


2001 ◽  
Vol 277 (3) ◽  
pp. 1770-1779 ◽  
Author(s):  
Marı́a José Cortés ◽  
Flossie Wong-Staal ◽  
Juan Lama
Keyword(s):  
T Cells ◽  

2007 ◽  
Vol 81 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Clare Jolly ◽  
Ivonne Mitar ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.


Sign in / Sign up

Export Citation Format

Share Document