scholarly journals Race between Retroviral Spread and CD4+ T-Cell Response Determines the Outcome of Acute Friend Virus Infection

2009 ◽  
Vol 83 (21) ◽  
pp. 11211-11222 ◽  
Author(s):  
Rebecca Pike ◽  
Andrew Filby ◽  
Mickaël J.-Y. Ploquin ◽  
Urszula Eksmond ◽  
Rute Marques ◽  
...  

ABSTRACT Retroviruses can establish persistent infection despite induction of a multipartite antiviral immune response. Whether collective failure of all parts of the immune response or selective deficiency in one crucial part underlies the inability of the host to clear retroviral infections is currently uncertain. We examine here the contribution of virus-specific CD4+ T cells in resistance against Friend virus (FV) infection in the murine host. We show that the magnitude and duration of the FV-specific CD4+ T-cell response is directly proportional to resistance against acute FV infection and subsequent disease. Notably, significant protection against FV-induced disease is afforded by FV-specific CD4+ T cells in the absence of a virus-specific CD8+ T-cell or B-cell response. Enhanced spread of FV infection in hosts with increased genetic susceptibility or coinfection with Lactate dehydrogenase-elevating virus (LDV) causes a proportional increase in the number of FV-specific CD4+ T cells required to control FV-induced disease. Furthermore, ultimate failure of FV/LDV coinfected hosts to control FV-induced disease is accompanied by accelerated contraction of the FV-specific CD4+ T-cell response. Conversely, an increased frequency or continuous supply of FV-specific CD4+ T cells is both necessary and sufficient to effectively contain acute infection and prevent disease, even in the presence of coinfection. Thus, these results suggest that FV-specific CD4+ T cells provide significant direct protection against acute FV infection, the extent of which critically depends on the ratio of FV-infected cells to FV-specific CD4+ T cells.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A880-A880
Author(s):  
Abigail Overacre-Delgoffe ◽  
Hannah Bumgarner ◽  
Anthony Cillo ◽  
Ansen Burr ◽  
Justin Tometich ◽  
...  

BackgroundColorectal cancer (CRC) is one of the most common and deadly cancers in the US, and the survival rate for advanced cases is poor. While immunotherapy has revolutionized cancer treatment, CRC remains largely unresponsive, with only ~6% of patients responding to anti-PD1. Specific microbiome signatures are associated with anti-PD1 response in melanoma patients; however, the underlying mechanism remains unclear. While the microbiome in cancer patients has been extensively studied, the endogenous immune response to these microbes and the subsequent effects on cancer immunity remain unstudied. Most microbes reside within the gut, and bacteria that adhere to the intestinal epithelium can stimulate bacteria-specific immune responses. Therefore, we hypothesized that the microbiome, especially adherent, immunogenic bacteria, may support anti-tumor immunity through activation of local microbiota-specific T cells.MethodsUsing a carcinogen-induced mouse model of CRC, we sought to determine the impact of microbiome modulation on the anti-tumor immune response. We colonized tumor-bearing mice with Helicobacter hepaticus (Hhep) and assessed tumor burden, survival, and immune infiltration. Lymphocytes were isolated from the tumor and surrounding tissue when tumors were terminal (12 weeks). We utilized TCR transgenic mice and MHC class II tetramers to track the spatial and transcriptional Hhep-specific T cell response through 5’ single cell RNAseq, flow cytometry, and spectral immunofluorescence.ResultsHhep colonization in tumor-bearing mice led to decreased tumor burden and significantly improved survival. Interestingly, colonization induced activation of Hhep-specific T follicular helper cells (TFHs) that supported formation of mature peri- or intra-tumoral tertiary lymphoid structures (TLS). The presence of TLS led to increased infiltration of cytotoxic lymphocytes (T and NK cells) within the tumor core. Surprisingly, the anti-tumor response was dependent on CD4+ T and B cells but not CD8+ T cells. Using TFH KO mice, we found that Hhep-specific CD4+ T cells were both necessary and sufficient to drive TLS maturation and anti-tumor immunity.ConclusionsHere, we demonstrate that addition of a single bacterial species after tumor formation leads to a reduction in CRC tumor burden and increased survival through TLS maturation. This microbiome-dependent remodeling of the tumor microenvironment is driven by Hhep-specific TFH cells that are both necessary and sufficient for tumor control, demonstrating for the first time that microbiota-specific T cells contribute to anti-tumor immunity. Overall, these findings suggest that microbiome modulation and the subsequent microbiota-specific CD4+ T cell response may represent a new variety of immunotherapies for cancers that remain resistant to checkpoint blockade.


2020 ◽  
Vol 8 (2) ◽  
pp. e000421
Author(s):  
Peng Peng ◽  
Hongming Hu ◽  
Ping Liu ◽  
Lisa X Xu

BackgroundTraditional tumor thermal ablations, such as radiofrequency ablation (RFA) and cryoablation, can result in good local control of tumor, but traditional tumor thermal ablations are limited by poor long-term survival due to the failure of control of distal metastasis. Our previous studies developed a novel cryo-thermal therapy to treat the B16F10 melanoma mouse model. Long-term survival and T-cell-mediated durable antitumor immunity were achieved after cryo-thermal therapy, but whether tumor antigen-specific T-cells were augmented by cryo-thermal therapy was not determined.MethodsThe long-term antitumor therapeutic efficacy of cryo-thermal therapy was performed in B16F10 murine melanoma models. Splenocytes derived from mice treated with RFA or cryo-thermal therapy were coincubated with tumor antigen peptides to detect the frequency of antigen specific CD4+ and CD8+ T-cells by flow cytometry. Splenocytes were then stimulated and expanded by αCD3 or peptides and adoptive T-cell therapy experiments were performed to identify the antitumor efficacy of T-cells induced by RFA and cryo-thermal therapy. Naïve mice and tumor-bearing mice were used as control groups.ResultsLocal cryo-thermal therapy generated a stronger systematic antitumor immune response than RFA and a long-lasting antitumor immunity that protected against tumor rechallenge. In vitro studies showed that the antigen-specific CD8+ T-cell response was induced by both cryo-thermal therapy and RFA, but the strong neoantigen-specific CD4+ T-cell response was only induced by cryo-thermal therapy. Cryo-thermal therapy-induced strong antitumor immune response was mainly mediated by CD4+ T-cells, particularly neoantigen-specific CD4+ T-cells.ConclusionCryo-thermal therapy induced a stronger and broader antigen-specific memory T-cells. Specifically, cryo-thermal therapy, but not RFA, led to a strong neoantigen-specific CD4+ T-cell response that mediated the resistance to tumor challenge.


2011 ◽  
Vol 18 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Bala Ramaswami ◽  
Iulia Popescu ◽  
Camila Macedo ◽  
Chunqing Luo ◽  
Ron Shapiro ◽  
...  

ABSTRACTBK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21032-21032
Author(s):  
K. N. Heller ◽  
P. G. Steinherz ◽  
C. S. Portlock ◽  
C. Münz

21032 Background: Epstein-Barr virus (EBV) asymptomatically establishes persistent infections in more than 90% of the adult population. However, due to effective immune control, only a minority of infected carriers develops spontaneous EBV-associated lymphomas. Since EBV nuclear antigen-1 (EBNA1) is the only protein expressed in all proliferating EBV infected cells we hypothesize that EBNA1 specific immune response is critical in preventing EBV-positive lymphomas. Methods: After informed consent, peripheral blood from healthy volunteers and lymphoma patients (prior to therapy- no evidence of cytopenia) were stimulated (ex vivo) with overlapping peptides covering the immunogenic EBNA1 (aa400–641) sequence. Frequency of EBNA1-specific T-cells were assessed by intracellular cytokine staining and flow cytometric proliferation assays. Cytokine pattern, surface marker phenotype and functional reactivity against EBV specific and control antigens were analyzed. Results: Patient and volunteer immune responses to control antigens and other viruses were assessed and statistically indistinguishable. EBNA1 specific CD4+ T cell responses were detected among 18 of 20 healthy carriers, and among 10 of 16 patients with EBV-negative lymphoma (relative to healthy volunteers p=0.145 via paired student T test). None of the patients with EBV-positive lymphomas (n=8) had a detectable EBNA1-specific CD4+ T-cell response (p<0.003 relative to healthy volunteers and patients with EBV-negative lymphomas). Conclusions: Healthy volunteers and patients with EBV-negative lymphoma have statistically similar EBNA1-specific CD4+ T cell responses. Although patients with EBV-positive lymphoma have intact immune responses to common viruses and antigens, they selectively lack an EBNA1-specific CD4+ T cell response. An intact EBNA1 specific immune response among patients with EBV-negaitve lymphoma implies that lymphoma is not a cause of a selective immune deficiency. On the contrary, these findings suggest that EBNA1-specific CD4+ T cells are critical in the prevention of EBV mediated lymphomas, and a defect in EBNA1 specific immunity may leave EBV carriers suseptible to EBV-positive lymphomas. EBNA1- specific CD4+ T cell function may be a new target for therapies of EBV-associated malignancies. No significant financial relationships to disclose.


2016 ◽  
Vol 34 (4) ◽  
pp. 396-409 ◽  
Author(s):  
Katja Nitschke ◽  
Hendrik Luxenburger ◽  
Muthamia M. Kiraithe ◽  
Robert Thimme ◽  
Christoph Neumann-Haefelin

Approximately 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV) worldwide and are thus at high risk of progressive liver disease, leading to liver fibrosis, cirrhosis and ultimately hepatocellular cancer. Virus-specific CD8+ T-cells play a major role in viral clearance in >90% of adult patients who clear HBV and in approximately 30% of patients who clear HCV in acute infection. However, several mechanisms contribute to the failure of the adaptive CD8+ T-cell response in those patients who progress to chronic infection. These include viral mutations leading to escape from the CD8+ T-cell response as well as exhaustion and dysfunction of virus-specific CD8+ T-cells. Antiviral efficacy of the virus-specific CD8+ T-cell response also strongly depends on its restriction by specific human leukocyte antigens (HLA) class I alleles. Our review will summarize the role of HLA-A, B and C-restricted CD8+ T-cells in HBV and HCV infection. Due to the current lack of a comprehensive database of HBV- and HCV-specific CD8+ T-cell epitopes, we also provide a summary of the repertoire of currently well-described HBV- and HCV-specific CD8+ T-cell epitopes. A better understanding of the factors that contribute to the success or failure of virus-specific CD8+ T-cells may help to develop new therapeutic options for HBV eradication in patients with chronic HBV infection (therapeutic vaccination and/or immunomodulation) as well as a prophylactic vaccine against HCV infection.


2021 ◽  
Author(s):  
Kevin Mohammed ◽  
Austin Meadows ◽  
Sandra Hatem ◽  
Viviana Simon ◽  
Anitha D Jayaprakash ◽  
...  

Early, high-resolution metrics are needed to ascertain the immune response to vaccinations. The T cell receptor (TCR), a heterodimer of one α and one β chain, is a promising target, with the complete TCR repertoire reflecting the T cells present in an individual. To this end, we developed Tseek, an unbiased and accurate method for profiling the TCR repertoire by sequencing the TCR α and β chains and developing a suite of tools for repertoire analysis. An added advantage is the ability to non-invasively analyze T cells in peripheral blood mononuclear cells (PBMCs). Tseek and the analytical suite were used to explore the T cell response to both the COVID-19 mRNA vaccine (n=9) and the seasonal inactivated Influenza vaccine (n=5) at several time points. Neutralizing antibody titers were also measured in the covid vaccine samples. The COVID-19 vaccine elicited a broad T cell response involving multiple expanded clones, whereas the Influenza vaccine elicited a narrower response involving fewer clones. Many distinct T cell clones responded at each time point, over a month, providing temporal details lacking in the antibody measurements, especially before the antibodies are detectable. In individuals recovered from a SARS-CoV-2 infection, the first vaccine dose elicited a robust T cell response, while the second dose elicited a comparatively weaker response, indicating a saturation of the response. The physical symptoms experienced by the recipients immediately following the vaccinations were not indicative of the TCR/antibody responses, while a weak TCR response seemed to presage a weak antibody response. We also found that the TCR repertoire acts as an individual fingerprint: donors of blood samples taken years apart could be identified solely based upon their TCR repertoire, hinting at other surprising uses the TCR repertoire may have. These results demonstrate the promise of TCR repertoire sequencing as an early and sensitive measure of the adaptive immune response to vaccination, which can help improve immunogen selection and optimize vaccine dosage and spacing between doses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sergej Tomić ◽  
Jelena Đokić ◽  
Dejan Stevanović ◽  
Nataša Ilić ◽  
Alisa Gruden-Movsesijan ◽  
...  

Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.


1998 ◽  
Vol 187 (9) ◽  
pp. 1395-1402 ◽  
Author(s):  
M.F.C. Callan ◽  
L. Tan ◽  
N. Annels ◽  
G.S. Ogg ◽  
J.D.K. Wilson ◽  
...  

Primary infection with virus can stimulate a vigorous cytotoxic T cell response. The magnitude of the antigen-specific component versus the bystander component of a primary T cell response remains controversial. In this study, we have used tetrameric major histocompatibility complex–peptide complexes to directly visualize antigen-specific cluster of differentration (CD)8+ T cells during the primary immune response to Epstein-Barr virus (EBV) infection in humans. We show that massive expansion of activated, antigen-specific T cells occurs during the primary response to this virus. In one individual, T cells specific for a single EBV epitope comprised 44% of the total CD8+ T cells within peripheral blood. The majority of the antigen-specific cells had an activated/memory phenotype, with expression of human histocompatibility leukocyte antigen (HLA) DR, CD38, and CD45RO, downregulation of CD62 leukocyte (CD62L), and low levels of expression of CD45RA. After recovery from AIM, the frequency of antigen-specific T cells fell in most donors studied, although populations of antigen-specific cells continued to be easily detectable for at least 3 yr.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jaana Westmeier ◽  
Krystallenia Paniskaki ◽  
Zehra Karaköse ◽  
Tanja Werner ◽  
Kathrin Sutter ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a T cell response that most likely contributes to virus control in COVID-19 patients but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients. Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B as well as perforin within different effector CD8+ T cell subsets. PD-1-expressing CD8+ T cells also produced cytotoxic molecules during acute infection, indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years, the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2. Our data provide valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development. IMPORTANCE Cytotoxic T cells are responsible for the elimination of infected cells and are key players in the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group than in younger patients.


2008 ◽  
Vol 205 (3) ◽  
pp. 669-684 ◽  
Author(s):  
Andrew G. Evans ◽  
Janice M. Moser ◽  
Laurie T. Krug ◽  
Veranika Pozharskaya ◽  
Ana L. Mora ◽  
...  

Little is known about herpesvirus modulation of T cell activation in latently infected individuals or the implications of such for chronic immune disorders. Murine gammaherpesvirus 68 (MHV68) elicits persistent activation of CD8+ T cells bearing a Vβ4+ T cell receptor (TCR) by a completely unknown mechanism. We show that a novel MHV68 protein encoded by the M1 gene is responsible for Vβ4+ CD8+ T cell stimulation in a manner reminiscent of a viral superantigen. During infection, M1 expression induces a Vβ4+ effector T cell response that resists functional exhaustion and appears to suppress virus reactivation from peritoneal cells by means of long-term interferon-γ (IFNγ) production. Mice lacking an IFNγ receptor (IFNγR−/−) fail to control MHV68 replication, and Vβ4+ and CD8+ T cell activation by M1 instead contributes to severe inflammation and multiorgan fibrotic disease. Thus, M1 manipulates the host CD8+ T cell response in a manner that facilitates latent infection in an immunocompetent setting, but promotes disease during a dysregulated immune response. Identification of a viral pathogenecity determinant with superantigen-like activity for CD8+ T cells broadens the known repertoire of viral immunomodulatory molecules, and its function illustrates the delicate balance achieved between persistent viruses and the host immune response.


Sign in / Sign up

Export Citation Format

Share Document