scholarly journals Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry

2018 ◽  
Vol 92 (10) ◽  
Author(s):  
Laura Riva ◽  
Ok-ryul Song ◽  
Jannick Prentoe ◽  
François Helle ◽  
Laurent L'homme ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry. IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.

2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Peiqi Yin ◽  
Ye Li ◽  
Leiliang Zhang

ABSTRACT Claudin-1 is a hepatitis C virus (HCV) coreceptor required for viral entry. Although extensive studies have focused on claudin-1 as an anti-HCV target, little is known about how the level of claudin-1 at the cell surface is regulated by host vesicular transport. Here, we identified an interaction between claudin-1 and Sec24C, a cargo-sorting component of the coat protein complex II (COPII) vesicular transport system. By interacting with Sec24C through its C-terminal YV, claudin-1 is transported from the endoplasmic reticulum (ER) and is eventually targeted to the cell surface. Blocking COPII transport inhibits HCV entry by reducing the level of claudin-1 at the cell surface. These findings provide mechanistic insight into the role of COPII vesicular transport in HCV entry. IMPORTANCE Tight junction protein claudin-1 is one of the cellular receptors for hepatitis C virus, which infects 185 million people globally. Its cellular distribution plays important role in HCV entry; however, it is unclear how the localization of claudin-1 to the cell surface is controlled by host transport pathways. In this paper, we not only identified Sec24C as a key host factor for HCV entry but also uncovered a novel mechanism by which the COPII machinery transports claudin-1 to the cell surface. This mechanism might be extended to other claudins that contain a C-terminal YV or V motif.


2007 ◽  
Vol 82 (5) ◽  
pp. 2120-2129 ◽  
Author(s):  
Pablo Gastaminza ◽  
Guofeng Cheng ◽  
Stefan Wieland ◽  
Jin Zhong ◽  
Wei Liao ◽  
...  

ABSTRACT Intracellular infectious hepatitis C virus (HCV) particles display a distinctly higher buoyant density than do secreted virus particles, suggesting that the characteristic low density of extracellular HCV particles is acquired during viral egress. We took advantage of this difference to examine the determinants of assembly, maturation, degradation, and egress of infectious HCV particles. The results demonstrate that HCV assembly and maturation occur in the endoplasmic reticulum (ER) and post-ER compartments, respectively, and that both depend on microsomal transfer protein and apolipoprotein B, in a manner that parallels the formation of very-low-density lipoproteins (VLDL). In addition, they illustrate that only low-density particles are efficiently secreted and that immature particles are actively degraded, in a proteasome-independent manner, in a post-ER compartment of the cell. These results suggest that by coopting the VLDL assembly, maturation, degradation, and secretory machinery of the cell, HCV acquires its hepatocyte tropism and, by mimicry, its tendency to persist.


2005 ◽  
Vol 49 (9) ◽  
pp. 3770-3775 ◽  
Author(s):  
Catherine François ◽  
Isabelle Bernard ◽  
Sandrine Castelain ◽  
Bryan Charleston ◽  
Martin D. Fray ◽  
...  

ABSTRACT Alpha interferons (α-IFNs) are potent biologically active proteins synthesized and secreted by somatic cells during viral infection. Quantification of α-IFN concentrations in biological samples is used for diagnosis. More recently, recombinant IFNs have been used as antiviral, antiproliferative, and immunomodulatory therapeutic agents, and particularly for the treatment of chronic hepatitis C virus infection. For this purpose, IFN has recently been coupled to polyethylene glycol (PEG) to improve the pharmacokinetic properties. The measure of α-IFN in biological samples from treated patients could be useful to ensure compliance to therapy and the true IFN activity in relation to viral decay during follow-up. In particular, it could be used to monitor the PEG-IFN concentration in patients treated for hepatitis C virus infection. The most frequently used test is a bioassay based on the antiviral property of the IFN, but the assay is not highly reproducible. Here, we present a reporter test based on MxA promoter activation of chloramphenicol acetyltransferase expression (Mx-CAT). MxA is an antiviral protein induced and tightly regulated by α-IFN. The Mx-CAT assay showed good reproducibility of 15% and was suitable to quantify PEG-IFN and numerous other α-IFN subtypes as well, despite a differential MxA promoter activation in relation with the subtype. A good correlation was obtained with the reporter assay and a commercial enzyme-linked immunosorbent assay on samples from treated patients. This test could be useful for monitoring IFN therapy of chronically infected hepatitis C virus-infected patients treated with the standard IFN, PEG-IFN, and probably forthcoming recombinant IFNs.


2016 ◽  
Vol 113 (27) ◽  
pp. 7620-7625 ◽  
Author(s):  
Qisheng Li ◽  
Catherine Sodroski ◽  
Brianna Lowey ◽  
Cameron J. Schweitzer ◽  
Helen Cha ◽  
...  

Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.


2019 ◽  
Vol 20 (9) ◽  
pp. 2367 ◽  
Author(s):  
Amiram Ravid ◽  
Noa Rapaport ◽  
Assaf Issachar ◽  
Arie Erman ◽  
Larisa Bachmetov ◽  
...  

Previously, we have reported that the active vitamin D metabolite, calcitriol and vitamin D3 (cholecalciferol), both remarkably inhibit hepatitis C virus production. The mechanism by which vitamin D3 exerts its effect is puzzling due to the low levels of calcitriol produced in vitamin D3-treated Huh7.5 cells. In this study, we aimed to explore the mechanism of vitamin D3 anti-hepatitis C virus effect. We show that vitamin D3 activity is not mediated by its metabolic conversion to calcitriol, but may be due to its primary metabolic product 25(OH)D3. This is inferred from the findings that 25(OH)D3 could inhibit hepatitis C virus production in our system, and that adequate concentrations needed to exert this effect are produced in Huh7.5 cells treated with vitamin D3. Using the CRISPR-Cas9 editing technology to knockout the vitamin D receptor, we found that the antiviral activity of vitamin D3 and 25(OH)D3 was not impaired in the vitamin D receptor knockout cells. This result indicates that 25(OH)D3 anti-hepatitis C virus effect is exerted by a vitamin D receptor-independent mode of action. The possibility that vitamin D3 and 25(OH)D3, being 3β-hydroxysteroids, affect hepatitis C virus production by direct inhibition of the Hedgehog pathway in a vitamin D receptor-independent manner was ruled out. Taken together, this study proposes a novel mode of action for the anti-hepatitis C virus activity of vitamin D3 that is mediated by 25(OH)D3 in a vitamin D receptor-independent mechanism.


2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Qiang Ding ◽  
Markus von Schaewen ◽  
Gabriela Hrebikova ◽  
Brigitte Heller ◽  
Lisa Sandmann ◽  
...  

ABSTRACT Hepatitis C virus (HCV) causes chronic infections in at least 150 million individuals worldwide. HCV has a narrow host range and robustly infects only humans and chimpanzees. The underlying mechanisms for this narrow host range are incompletely understood. At the level of entry, differences in the amino acid sequences between the human and mouse orthologues of two essential host factors, the tetraspanin CD81 and the tight junction protein occludin (OCLN), explain, at least in part, HCV's limited ability to enter mouse hepatocytes. We have previously shown that adenoviral or transgenic overexpression of human CD81 and OCLN facilitates HCV uptake into mouse hepatocytes in vitro and in vivo. In efforts to refine these models, we constructed knock-in mice in which the second extracellular loops of CD81 and OCLN were replaced with the respective human sequences, which contain the determinants that are critical for HCV uptake. We demonstrate that the humanized CD81 and OCLN were expressed at physiological levels in a tissue-appropriate fashion. Mice bearing the humanized alleles formed normal tight junctions and did not exhibit any immunologic abnormalities, indicating that interactions with their physiological ligands were intact. HCV entry factor knock-in mice take up HCV with an efficiency similar to that in mice expressing HCV entry factors transgenically or adenovirally, demonstrating the utility of this model for studying HCV infection in vivo. IMPORTANCE At least 150 million individuals are chronically infected with hepatitis C virus (HCV). Chronic hepatitis C can result in progressive liver disease and liver cancer. New antiviral treatments can cure HCV in the majority of patients, but a vaccine remains elusive. To gain a better understanding of the processes culminating in liver failure and cancer and to prioritize vaccine candidates more efficiently, small-animal models are needed. Here, we describe the characterization of a new mouse model in which the parts of two host factors that are essential for HCV uptake, CD81 and occludin (OCLN), which differ between mice and humans, were humanized. We demonstrate that such minimally humanized mice develop normally, express the modified genes at physiological levels, and support HCV uptake. This model is of considerable utility for studying viral entry in the three-dimensional context of the liver and to test approaches aimed at preventing HCV entry.


2012 ◽  
Vol 86 (13) ◽  
pp. 7256-7267 ◽  
Author(s):  
J. Jiang ◽  
W. Cun ◽  
X. Wu ◽  
Q. Shi ◽  
H. Tang ◽  
...  

2006 ◽  
Vol 81 (2) ◽  
pp. 588-598 ◽  
Author(s):  
George Koutsoudakis ◽  
Eva Herrmann ◽  
Stephanie Kallis ◽  
Ralf Bartenschlager ◽  
Thomas Pietschmann

ABSTRACT Recently a cell culture model supporting the complete life cycle of the hepatitis C virus (HCV) was developed. Searching for host cell determinants involved in the HCV replication cycle, we evaluated the efficiency of virus propagation in different Huh-7-derived cell clones. We found that Huh-7.5 cells and Huh7-Lunet cells, two former replicon cell clones that had been generated by removal of an HCV replicon by inhibitor treatment, supported comparable levels of RNA replication and particle production, whereas virus spread was severely impaired in the latter cells. Analysis of cell surface expression of CD81 and scavenger receptor class B type I (SR-BI), two molecules previously implicated in HCV entry, revealed similar expression levels for SR-BI, while CD81 surface expression was much higher on Huh-7.5 cells than on Huh7-Lunet cells. Ectopic expression of CD81 in Huh7-Lunet cells conferred permissiveness for HCV infection to a level comparable to that for Huh-7.5 cells. Modulation of CD81 cell surface density in Huh-7.5 cells by RNA interference indicated that a certain amount of this molecule (∼7 × 104 molecules per cell) is required for productive infection with a low dose of HCV. Consistent with this, we show that susceptibility to HCV infection depends on a critical quantity of CD81 molecules. While infection is restricted in cells expressing very small amounts of CD81, susceptibility rapidly rises within a narrow range of CD81 levels, reaching a plateau where higher expression does not further increase the efficiency of infection. Together these data indicate that a high density of cell surface-exposed CD81 is a key determinant for productive HCV entry into host cells.


2009 ◽  
Vol 83 (16) ◽  
pp. 8012-8020 ◽  
Author(s):  
Ignacio Benedicto ◽  
Francisca Molina-Jiménez ◽  
Birke Bartosch ◽  
François-Loïc Cosset ◽  
Dimitri Lavillette ◽  
...  

ABSTRACT The precise mechanisms regulating hepatitis C virus (HCV) entry into hepatic cells remain unknown. However, several cell surface proteins have been identified as entry factors for this virus. Of these molecules, claudin-1, a tight junction (TJ) component, is considered a coreceptor required for HCV entry. Recently, we have demonstrated that HCV envelope glycoproteins (HCVgp) promote structural and functional TJ alterations. Additionally, we have shown that the intracellular interaction between viral E2 glycoprotein and occludin, another TJ-associated protein, could be the cause of the mislocalization of TJ proteins. Herein we demonstrated, by using cell culture-derived HCV particles (HCVcc), that interference of occludin expression markedly reduced HCV infection. Furthermore, our results with HCV pseudotyped particles indicated that occludin, but not other TJ-associated proteins, such as junctional adhesion molecule A or zonula occludens protein 1, was required for HCV entry. Using HCVcc, we demonstrated that occludin did not play an essential role in the initial attachment of HCV to target cells. Surface protein labeling experiments showed that both expression levels and cell surface localization of HCV (co)receptors CD81, scavenger receptor class B type I, and claudin-1 were not affected upon occludin knockdown. In addition, immunofluorescence confocal analysis showed that occludin interference did not affect subcellular distribution of the HCV (co)receptors analyzed. However, HCVgp fusion-associated events were altered after occludin silencing. In summary, we propose that occludin plays an essential role in HCV infection and probably affects late entry events. This observation may provide new insights into HCV infection and related pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document