scholarly journals Relationship between Measures of HIV Reactivation and Decline of the Latent Reservoir under Latency-Reversing Agents

2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Janka Petravic ◽  
Thomas A. Rasmussen ◽  
Sharon R. Lewin ◽  
Stephen J. Kent ◽  
Miles P. Davenport

ABSTRACT Antiretroviral-free HIV remission requires substantial reduction of the number of latently infected cells and enhanced immune control of viremia. Latency-reversing agents (LRAs) aim to eliminate latently infected cells by increasing the rate of reactivation of HIV transcription, which exposes these cells to killing by the immune system. As LRAs are explored in clinical trials, it becomes increasingly important to assess the effect of an increased HIV reactivation rate on the decline of latently infected cells and to estimate LRA efficacy in increasing virus reactivation. However, whether the extent of HIV reactivation is a good predictor of the rate of decline of the number of latently infected cells is dependent on a number of factors. Our modeling shows that the mechanisms of maintenance and clearance of the reservoir, the life span of cells with reactivated HIV, and other factors may significantly impact the relationship between measures of HIV reactivation and the decline in the number of latently infected cells. The usual measures of HIV reactivation are the increase in cell-associated HIV RNA (CA RNA) and/or plasma HIV RNA soon after administration. We analyze two recent studies where CA RNA was used to estimate the impact of two novel LRAs, panobinostat and romidepsin. Both drugs increased the CA RNA level 3- to 4-fold in clinical trials. However, cells with panobinostat-reactivated HIV appeared long-lived (half-life > 1 month), suggesting that the HIV reactivation rate increased by approximately 8%. With romidepsin, the life span of cells that reactivated HIV was short (2 days), suggesting that the HIV reactivation rate may have doubled under treatment. IMPORTANCE Long-lived latently infected cells that persist on antiretroviral treatment (ART) are thought to be the source of viral rebound soon after ART interruption. The elimination of latently infected cells is an important step in achieving antiretroviral-free HIV remission. Latency-reversing agents (LRAs) aim to activate HIV expression in latently infected cells, which could lead to their death. Here, we discuss the possible impact of the LRAs on the reduction of the number of latently infected cells, depending on the mechanisms of their loss and self-renewal and on the life span of the cells that have HIV transcription activated by the LRAs.

Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 84 ◽  
Author(s):  
Gerlinde Vansant ◽  
Anne Bruggemans ◽  
Julie Janssens ◽  
Zeger Debyser

Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010019
Author(s):  
Brian F. Niemeyer ◽  
Bridget Sanford ◽  
Joy E. Gibson ◽  
Jennifer N. Berger ◽  
Lauren M. Oko ◽  
...  

Gammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into detectable lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on properties of latent infection, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::βla), to enumerate both the cellular distribution and frequency of LANA gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::βla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::βla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential LANA expression, and that a primary function of the viral cyclin is to promote LANA expression during latency, a state associated with ex vivo reactivation competence.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008434
Author(s):  
Ananya Saha ◽  
Narendra M. Dixit

Passive immunization with broadly neutralizing antibodies (bNAbs) of HIV-1 appears a promising strategy for eliciting long-term HIV-1 remission. When administered concomitantly with the cessation of antiretroviral therapy (ART) to patients with established viremic control, bNAb therapy is expected to prolong remission. Surprisingly, in clinical trials on chronic HIV-1 patients, the bNAb VRC01 failed to prolong remission substantially. Identifying the cause of this failure is important for improving VRC01-based therapies and unraveling potential vulnerabilities of other bNAbs. In the trials, viremia resurged rapidly in most patients despite suppressive VRC01 concentrations in circulation, suggesting that VRC01 resistance was the likely cause of failure. ART swiftly halts viral replication, precluding the development of resistance during ART. If resistance were to emerge post ART, virological breakthrough would have taken longer than without VRC01 therapy. We hypothesized therefore that VRC01-resistant strains must have been formed before ART initiation, survived ART in latently infected cells, and been activated during VRC01 therapy, causing treatment failure. Current assays preclude testing this hypothesis experimentally. We developed a mathematical model based on the hypothesis and challenged it with available clinical data. The model integrated within-host HIV-1 evolution, stochastic latency reactivation, and viral dynamics with multiple-dose VRC01 pharmacokinetics. The model predicted that single but not higher VRC01-resistant mutants would pre-exist in the latent reservoir. We constructed a virtual patient population that parsimoniously recapitulated inter-patient variations. Model predictions with this population quantitatively captured data of VRC01 failure from clinical trials, presenting strong evidence supporting the hypothesis. We attributed VRC01 failure to single-mutant VRC01-resistant proviruses in the latent reservoir triggering viral recrudescence, particularly when VRC01 was at trough levels. Pre-existing resistant proviruses in the latent reservoir may similarly compromise other bNAbs. Our study provides a framework for designing bNAb-based therapeutic protocols that would avert such failure and maximize HIV-1 remission.


Biology Open ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. bio052969
Author(s):  
Jared P. Taylor ◽  
Lucas H. Armitage ◽  
Daniel L. Aldridge ◽  
Melanie N. Cash ◽  
Mark A. Wallet

ABSTRACTInfection with human immunodeficiency virus 1 (HIV-1) remains incurable because long-lived, latently-infected cells persist during prolonged antiretroviral therapy. Attempts to pharmacologically reactivate and purge the latent reservoir with latency reactivating agents (LRAs) such as protein kinase C (PKC) agonists (e.g. ingenol A) or histone deacetylase (HDAC) inhibitors (e.g. SAHA) have shown promising but incomplete efficacy. Using the J-Lat T cell model of HIV latency, we found that the plant-derived compound harmine enhanced the efficacy of existing PKC agonist LRAs in reactivating latently-infected cells. Treatment with harmine increased not only the number of reactivated cells but also increased HIV transcription and protein expression on a per-cell basis. Importantly, we observed a synergistic effect when harmine was used in combination with ingenol A and the HDAC inhibitor SAHA. An investigation into the mechanism revealed that harmine, when used with LRAs, increased the activity of NFκB, MAPK p38, and ERK1/2. Harmine treatment also resulted in reduced expression of HEXIM1, a negative regulator of transcriptional elongation. Thus, harmine enhanced the effects of LRAs by increasing the availability of transcription factors needed for HIV reactivation and promoting transcriptional elongation. Combination therapies with harmine and LRAs could benefit patients by achieving deeper reactivation of the latent pool of HIV provirus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timo W. M. De Groof ◽  
Elizabeth G. Elder ◽  
Eleanor Y. Lim ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

AbstractLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients.


2019 ◽  
Author(s):  
Brian F Niemeyer ◽  
Joy E Gibson ◽  
Jennifer N Berger ◽  
Lauren M Oko ◽  
Eva Medina ◽  
...  

AbstractGammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into more active lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on latent gene expression, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::βla), to enumerate both the cellular distribution and frequency of latent gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::βla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::βla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential latent gene expression, and that a primary function of the viral cyclin is to promote latent gene expression within infected cells in vivo.AUTHOR SUMMARYGammaherpesviruses are ubiquitous viruses with oncogenic potential that establish latency for the life of the host. These viruses can emerge from latency through reactivation, a process that is controlled by the immune system. Control of viral latency and reactivation is thought to be critical to prevent γHV-associated disease. This study focuses on a virally-encoded cyclin that is required for reactivation from latency. By characterizing how the viral cyclin influences latent infection in pure cell populations, we find that the viral cyclin has a vital role in promoting viral gene expression during latency. This work provides new insight into the function of a virally encoded cyclin in promoting reactivation from latency.


Author(s):  
Alyssa R Martin ◽  
Alexandra M Bender ◽  
Jada Hackman ◽  
Kyungyoon J Kwon ◽  
Briana A Lynch ◽  
...  

Abstract Background The HIV-1 latent reservoir (LR) in resting CD4 + T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. Methods We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from ten HIV-1-infected patients on ART using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. Results The frequencies of CD4 + T cells with intact proviruses were not significantly different in PB vs LN (61vs104/10 6CD4 + cells), and were substantially lower than frequencies of CD4 + T cells with defective proviruses. The frequencies of CD4 + T cells induced to produce high levels of viral RNA were not significantly different in PB vs LN (4.3/10 6 vs 7.9/10 6), but were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. Conclusions These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs


Cell Cycle ◽  
2020 ◽  
Vol 19 (18) ◽  
pp. 2298-2313
Author(s):  
Dorota Piekna-Przybylska ◽  
Robert A. Bambara ◽  
Sanjay B. Maggirwar ◽  
Stephen Dewhurst

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 127
Author(s):  
Maria C. Virgilio ◽  
Kathleen L. Collins

Human immunodeficiency virus (HIV) is a chronic infection that destroys the immune system in infected individuals. Although antiretroviral therapy is effective at preventing infection of new cells, it is not curative. The inability to clear infection is due to the presence of a rare, but long-lasting latent cellular reservoir. These cells harboring silent integrated proviral genomes have the potential to become activated at any moment, making therapy necessary for life. Latently-infected cells can also proliferate and expand the viral reservoir through several methods including homeostatic proliferation and differentiation. The chromosomal location of HIV proviruses within cells influences the survival and proliferative potential of host cells. Proliferating, latently-infected cells can harbor proviruses that are both replication-competent and defective. Replication-competent proviral genomes contribute to viral rebound in an infected individual. The majority of available techniques can only assess the integration site or the proviral genome, but not both, preventing reliable evaluation of HIV reservoirs.


2017 ◽  
Vol 114 (18) ◽  
pp. E3659-E3668 ◽  
Author(s):  
Ann Wiegand ◽  
Jonathan Spindler ◽  
Feiyu F. Hong ◽  
Wei Shao ◽  
Joshua C. Cyktor ◽  
...  

Little is known about the fraction of human immunodeficiency virus type 1 (HIV-1) proviruses that express unspliced viral RNA in vivo or about the levels of HIV RNA expression within single infected cells. We developed a sensitive cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) method to investigate fractional proviral expression of HIV RNA (1.3-kb fragment of p6, protease, and reverse transcriptase) and the levels of HIV RNA in single HIV-infected cells from blood samples obtained from individuals with viremia or individuals on long-term suppressive antiretroviral therapy (ART). Spiking experiments show that the CARD-SGS method can detect a single cell expressing HIV RNA. Applying CARD-SGS to blood mononuclear cells in six samples from four HIV-infected donors (one with viremia and not on ART and three with viremia suppressed on ART) revealed that an average of 7% of proviruses (range: 2–18%) expressed HIV RNA. Levels of expression varied from one to 62 HIV RNA molecules per cell (median of 1). CARD-SGS also revealed the frequent expression of identical HIV RNA sequences across multiple single cells and across multiple time points in donors on suppressive ART consistent with constitutive expression of HIV RNA in infected cell clones. Defective proviruses were found to express HIV RNA at levels similar to those proviruses that had no obvious defects. CARD-SGS is a useful tool to characterize fractional proviral expression in single infected cells that persist despite ART and to assess the impact of experimental interventions on proviral populations and their expression.


Sign in / Sign up

Export Citation Format

Share Document