scholarly journals Localization of an immunodominant domain on baculovirus-produced parvovirus B19 capsids: correlation to a major surface region on the native virus particle.

1992 ◽  
Vol 66 (12) ◽  
pp. 6989-6996 ◽  
Author(s):  
C S Brown ◽  
T Jensen ◽  
R H Meloen ◽  
W Puijk ◽  
K Sugamura ◽  
...  
2007 ◽  
Vol 81 (12) ◽  
pp. 6231-6240 ◽  
Author(s):  
Christopher B. Whitehurst ◽  
Erik J. Soderblom ◽  
Michelle L. West ◽  
Raquel Hernandez ◽  
Michael B. Goshe ◽  
...  

ABSTRACT Sindbis virus is a single-stranded positive-sense RNA virus. It is composed of 240 copies of three structural proteins: E1, E2, and capsid. These proteins form a mature virus particle composed of two nested T=4 icosahedral shells. A complex network of disulfide bonds in the E1 and E2 glycoproteins is developed through a series of structural intermediates as virus maturation occurs (M. Mulvey and D. T. Brown, J. Virol. 68:805-812, 1994; M. Carleton et al., J. Virol. 71:1558-1566, 1997). To better understand the nature of this disulfide network, E1 and E2 cysteinyl residues were labeled with iodoacetamide in the native virus particle and analyzed by liquid chromatography-tandem mass spectrometry. This analysis identified cysteinyl residues of E1 and E2, which were found to be label accessible in the native virus particle, as well as those that were either label inaccessible or blocked by their involvement in disulfide bonds. Native virus particles alkylated with iodoacetamide demonstrated a 4-log decrease in viral infectivity. This suggests that the modification of free cysteinyl residues results in the loss of infectivity by destabilizing the virus particle or that a rearrangement of disulfide bonds, which is required for infectivity, is blocked by the modification. Although modification of these residues prevented infectivity, it did not alter the ability of virus to fuse cells after exposure to acidic pH; thus, modification of free cysteinyl residues biochemically separated the process of infection from the process of membrane fusion.


Author(s):  
Elizabeth S. Priori ◽  
T. Shigematsu ◽  
B. Myers ◽  
L. Dmochowski

Spontaneous release of type C virus particles in long-term cultures of mouse embryo cells as well as induction of similar particles in mouse embryo cell cultures with IUDR or BUDR have been reported. The presence of type C virus particles in cultures of normal rat embryos has not been reported.NB-1, a culture derived from embryos of a New Zealand Black (NB) rat (rats obtained from Mr. Samuel M. Poiley, N.C.I., Bethesda, Md.) and grown in McCoy's 5A medium supplemented with 20% fetal calf serum was passaged weekly. Extracellular virus particles similar to murine leukemia particles appeared in the 22nd subculture. General appearance of cells in passage 23 is shown in Fig. 1. Two budding figures and one immature type C virus particle may be seen in Fig. 2. The virus particles and budding were present in all further passages examined (currently passage 39). Various stages of budding are shown in Figs. 3a,b,c,d. Appearance of a mature virus particle is shown in Fig. 4.


Author(s):  
A. K. Rai ◽  
P. P. Pronko

Several techniques have been reported in the past to prepare cross(x)-sectional TEM specimen. These methods are applicable when the sample surface is uniform. Examples of samples having uniform surfaces are ion implanted samples, thin films deposited on substrates and epilayers grown on substrates. Once device structures are fabricated on the surfaces of appropriate materials these surfaces will no longer remain uniform. For samples with uniform surfaces it does not matter which part of the surface region remains in the thin sections of the x-sectional TEM specimen since it is similar everywhere. However, in order to study a specific region of a device employing x-sectional TEM, one has to make sure that the desired region is thinned. In the present work a simple way to obtain thin sections of desired device region is described.


Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Author(s):  
H.-J. Ou ◽  
J. M. Cowley ◽  
A. A. Higgs

A scanning ion gun system has been installed on the specimen preparation chamber (pressure ∼5xl0-8 torr) of the VG-HB5 STEM microscope. By using the specimen current imaging technique, it is possible to use an ion beam to sputter-clean the preferred surface region on a bulk sample. As shown in figure 1, the X-Y raster-gate control of the scanning unit for the Krato Mini-Beam I is used to minimize the beam raster area down to a 800μm x800μm square region. With beam energy of 2.5KeV, the MgO cleavage surface has been ion sputter-cleaned for less than 1 minute. The carbon film or other contaminant, introduced during the cleavage process in air, is mostly removed from the MgO crystal surfaces.The immediate SREM inspection of this as-cleaned MgO surface, within the adjacent STEM microscope, has revealed the detailed surface structures of atomic steps, which were difficult to observe on the as-cleaved MgO surfaces in the previous studies.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


2000 ◽  
Vol 111 (2) ◽  
pp. 659-661 ◽  
Author(s):  
Erik D. Heegaard ◽  
Bodil Laub Petersen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document