scholarly journals Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4.

1997 ◽  
Vol 71 (5) ◽  
pp. 3545-3553 ◽  
Author(s):  
S G Whalen ◽  
R C Marcellus ◽  
A Whalen ◽  
N G Ahn ◽  
R P Ricciardi ◽  
...  
2003 ◽  
Vol 23 (17) ◽  
pp. 6243-6254 ◽  
Author(s):  
Apollina Goel ◽  
Ralf Janknecht

ABSTRACT The regulated expression of the ETS transcription factor ER81 is a prerequisite for normal development, and its dysregulation contributes to neoplasia. Here, we demonstrate that ER81 is acetylated by two coactivators/acetyltransferases, p300 and p300- and CBP-associated factor (P/CAF) in vitro and in vivo. Whereas p300 acetylates two lysine residues (K33 and K116) within the ER81 N-terminal transactivation domain, P/CAF targets only K116. Acetylation of ER81 not only enhances its ability to transactivate but also increases its DNA binding activity and in vivo half-life. Furthermore, oncogenic HER2/Neu, which induces phosphorylation and thereby activation of ER81, was less able to activate acetylation-deficient ER81 mutants, indicating that both acetyltransferase and protein kinase-specific regulatory mechanisms control ER81 activity. Importantly, HER2/Neu overexpression stimulates the ability of p300 to acetylate ER81, likely by inducing phosphorylation of p300 through the Ras→Raf→mitogen-activated protein kinase pathway. This represents a novel mechanism by which oncogenic HER2/Neu, Ras, or Raf may promote tumor formation by enhancing acetylation not only of ER81 but also of other downstream effector transcription factors as well as histones.


2001 ◽  
Vol 12 (3) ◽  
pp. 699-710 ◽  
Author(s):  
Zhiying Zhang ◽  
M. Mitchell Smith ◽  
Joe S. Mymryk

The C-terminal portion of adenovirus E1A suppresses ras-induced metastasis and tumorigenicity in mammalian cells; however, little is known about the mechanisms by which this occurs. In the simple eukaryote Saccharomyces cerevisiae, Ras2p, the homolog of mammalian h-ras, regulates mitogen-activated protein kinase (MAPK) and cyclic AMP-dependent protein kinase A (cAMP/PKA) signaling pathways to control differentiation from the yeast form to the pseudohyphal form. When expressed in yeast, the C-terminal region of E1A induced pseudohyphal differentiation, and this was independent of both the MAPK and cAMP/PKA signaling pathways. Using the yeast two-hybrid system, we identified an interaction between the C-terminal region of E1A and Yak1p, a yeast dual-specificity serine/threonine protein kinase that functions as a negative regulator of growth. E1A also physically interacts with Dyrk1A and Dyrk1B, two mammalian homologs of Yak1p, and stimulates their kinase activity in vitro. We further demonstrate that Yak1p is required in yeast to mediate pseudohyphal differentiation induced by Ras2p-regulated signaling pathways. However, pseudohyphal differentiation induced by the C-terminal region of E1A is largely independent of Yak1p. These data suggest that mammalian Yak1p-related kinases may be targeted by the E1A oncogene to modulate cell growth.


2005 ◽  
Vol 25 (19) ◽  
pp. 8553-8566 ◽  
Author(s):  
Sue J. Sohn ◽  
Dongling Li ◽  
Linda K. Lee ◽  
Astar Winoto

ABSTRACT The ERK5 mitogen-activated protein kinase (MAPK) differs from other MAPKs in possessing a potent transcriptional activation domain. ERK5 −/− embryos die from angiogenic defects, but the precise physiological role of ERK5 remains poorly understood. To elucidate molecular functions of ERK5 in the development of vasculature and other tissues, we performed gene profile analyses of erk5 −/− mouse embryos and erk5 −/− fibroblast cells reconstituted with ERK5 or ERK5(1-740), which lacks the transactivation domain. These experiments revealed several potential ERK5 target genes, including a proapoptotic gene bnip3, known angiogenic genes flt1 and lklf (lung Krüppel-like factor), and genes that regulate cardiovascular development. Among these, LKLF, known for its roles in angiogenesis, T-cell quiescence, and survival, was found to be absolutely dependent on ERK5 for expression in endothelial and T cells. We show that ERK5 drives lklf transcription by activating MEF2 transcription factors. Expression of erk5 short hairpin or a dominant-negative form of the ERK5 upstream activator, MEK5, in T cells led to downregulation of LKLF, increased cell size and upregulation of activation markers. Thus, through its kinase and transcriptional activation domains, ERK5 regulates transcriptional responses of cell survival and quiescence critical for angiogenesis and T-cell function.


1999 ◽  
Vol 19 (9) ◽  
pp. 6240-6252 ◽  
Author(s):  
Grazia Cirillo ◽  
Laura Casalino ◽  
Daniela Vallone ◽  
Anna Caracciolo ◽  
Dario De Cesare ◽  
...  

ABSTRACT We have investigated the in vivo and in vitro regulation of the human urokinase-type plasminogen activator (uPA) gene by interleukin-1 (IL-1) and analyzed the transcription factors and signalling pathways involved in the response of the −2.0-kb uPA enhancer to IL-1 induction and to tetradecanoyl phorbol acetate (TPA) induction. Mutational analysis showed the cooperative activity of the Ets-binding site (EBS) and the two AP-1 elements of the enhancer. The results reveal that the EBS is required for the response to both inducers mediated by Ets-2, which is regulated at a level subsequent to DNA binding, by an IL-1- and phorbol ester-inducible transactivation domain. Both the IL-1 and the TPA-mediated induction result in a drastic increase of AP-1 binding to the downstream site of the enhancer (uPA 3′ TPA-responsive element), while a mostly qualitative change, resulting from the interplay between ATF-2 homodimers and c-Jun–ATF-2 heterodimers, takes place at the upstream AP-1 element. The analysis of two distinct mitogen-activated protein kinase pathways shows that stress-activated protein kinase–Jun N-terminal kinase activation, resulting in the phosphorylation of ATF-2, c-Jun, and JunD, is required not only for the IL-1- but also for the TPA-dependent induction, while the extracellular signal-related kinase 1 (ERK-1) and ERK-2 activation is involved in the TPA- but not in the IL-1-dependent stimulation of the uPA enhancer.


2020 ◽  
Vol 21 (3) ◽  
pp. 929 ◽  
Author(s):  
Adam J. Pearson ◽  
Paul Fullwood ◽  
Gabriela Toro Tapia ◽  
Ian Prise ◽  
Michael P. Smith ◽  
...  

The extracellular signal-regulated protein kinase 5 (ERK5) is a non-redundant mitogen-activated protein kinase (MAPK) that exhibits a unique C-terminal extension which comprises distinct structural and functional properties. Here, we sought to elucidate the significance of phosphoacceptor sites in the C-terminal transactivation domain of ERK5. We have found that Thr732 acted as a functional gatekeeper residue controlling C-terminal-mediated nuclear translocation and transcriptional enhancement. Consistently, using a non-bias quantitative mass spectrometry approach, we demonstrated that phosphorylation at Thr732 conferred selectivity for binding interactions of ERK5 with proteins related to chromatin and RNA biology, whereas a number of metabolic regulators were associated with full-length wild type ERK5. Additionally, our proteomic analysis revealed that phosphorylation of the Ser730-Glu-Thr732-Pro motif could occur independently of dual phosphorylation at Thr218-Glu-Tyr220 in the activation loop. Collectively, our results firmly establish the significance of C-terminal phosphorylation in regulating ERK5 function. The post-translational modification of ERK5 on its C-terminal tail might be of particular relevance in cancer cells where ERK5 has be found to be hyperphosphoryated.


Sign in / Sign up

Export Citation Format

Share Document