scholarly journals Activation of Transcription of the Human Cytomegalovirus Early UL4 Promoter by the Ets Transcription Factor Binding Element

2000 ◽  
Vol 74 (21) ◽  
pp. 9845-9857 ◽  
Author(s):  
Jiping Chen ◽  
Mark F. Stinski

ABSTRACT The human cytomegalovirus (HCMV) early UL4 promoter has served as a useful model for studying the activation of early viral gene expression. Previous transient-transfection experiments detectedcis-acting elements (the NF-Y site and site 2) upstream of the transcriptional start site (L. Huang and M. F. Stinski, J. Virol. 69:7612–7621, 1995). The roles of two of these sites, the NF-Y site and site 2, in the context of the viral genome were investigated further by comparing mRNA levels from the early UL4 promoter in human foreskin fibroblasts infected by recombinant viruses with either wild-type or mutant cis-acting elements. Steady-state mRNA levels from the UL4 promoter with a mutation in the NF-Y site were comparable to that of wild type. A mutation in an Elk-1 site plus putative IE86 protein binding sites decreased the steady-state mRNA levels compared to the wild type at early times after infection. Electrophoretic mobility shift assays and antibody supershifts detected the binding of cellular transcription factor Elk-1 to site 2 DNA with infected nuclear extracts but not with mock-infected nuclear extracts. The role of cellular transcription factors activated by the mitogen activated protein kinase/extracellular signal-regulated kinase pathway in activating transcription from early viral promoters is discussed.

2001 ◽  
Vol 75 (24) ◽  
pp. 12319-12330 ◽  
Author(s):  
Edward P. Browne ◽  
Bret Wing ◽  
David Coleman ◽  
Thomas Shenk

ABSTRACT The effect of human cytomegalovirus (HCMV) infection on cellular mRNA accumulation was analyzed by gene chip technology. During a 48-h time course after infection of human diploid fibroblasts, 1,425 cellular mRNAs were found to be up-regulated or down-regulated by threefold or greater in at least two consecutive time points. Several classes of genes were prominently affected, including interferon response genes, cell cycle regulators, apoptosis regulators, inflammatory pathway genes, and immune regulators. The number of mRNAs that were up-regulated or down-regulated were roughly equal over the complete time course. However, for the first 8 h after infection, the number of up-regulated mRNAs was significantly less than the number of down-regulated mRNAs. By analyzing the mRNA expression profile of cells infected in the presence of cycloheximide, it was found that a minimum of 25 mRNAs were modulated by HCMV in the absence of protein synthesis. These included mRNAs encoded by a small number of interferon-responsive genes, as well as beta interferon itself. Cellular mRNA levels in cytomegalovirus-infected cells were compared to the levels in cells infected with UV-inactivated virus. The inactivated virus caused the up-regulation of a much greater number of mRNAs, many of which encoded proteins with antiviral roles, such as interferon-responsive genes and proinflammatory cytokines. These data argue that one or more newly synthesized viral gene products block the induction of antiviral pathways that are triggered by HCMV binding and entry.


2007 ◽  
Vol 75 (9) ◽  
pp. 4472-4481 ◽  
Author(s):  
Junzo Hisatsune ◽  
Eiki Yamasaki ◽  
Masaaki Nakayama ◽  
Daisuke Shirasaka ◽  
Hisao Kurazono ◽  
...  

ABSTRACT Treatment of AZ-521 cells with Helicobacter pylori VacA increased cyclooxygenase 2 (COX-2) mRNA in a time- and dose-dependent manner. A p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, blocked elevation of COX-2 mRNA levels, whereas PD98059, which blocks the Erk1/2 cascade, partially suppressed the increase. Consistent with involvement of p38 MAPK, VacA-induced accumulation of COX-2 mRNA was reduced in AZ-521 cells overexpressing a dominant-negative p38 MAPK (DN-p38). Phosphatidylinositol-specific phospholipase C, which inhibits VacA-induced p38 MAPK activation, blocked VacA-induced COX-2 expression. In parallel with COX-2 expression, VacA increased prostaglandin E2 (PGE2) production, which was inhibited by SB203580 and NS-398, a COX-2 inhibitor. VacA-induced PGE2 production was markedly attenuated in AZ-521 cells stably expressing DN-p38. VacA increased transcription of a COX-2 promoter reporter gene and activated a COX-2 promoter containing mutated NF-κB or NF-interleukin-6 sites but not a mutated cis-acting replication element (CRE) site, suggesting direct involvement of the activating transcription factor 2 (ATF-2)/CREB-binding region in VacA-induced COX-2 promoter activation. The reduction of ATF-2 expression in AZ-521 cells transformed with ATF-2-small interfering RNA duplexes resulted in suppression of COX-2 expression. Thus, VacA enhances PGE2 production by AZ-521 cells through induction of COX-2 expression via the p38 MAPK/ATF-2 cascade, leading to activation of the CRE site in the COX-2 promoter.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3979-3979
Author(s):  
Georg Aue ◽  
Yang Du ◽  
Susan Cleveland ◽  
Stephen Smith ◽  
Utpal P. Dave ◽  
...  

Abstract Abstract 3979 Poster Board III-915 Mice that express 20% the normal levels of the Ets transcription factor Pu.1 develop AML, unlike mice that express 50% to 90% the normal levels, indicating that Pu.1 is a dosage-sensitive tumor suppressor gene. Furthermore, 3 of 13 AMLs induced by transplanting mice with cells transduced with a Sox4 oncogene-containing retrovirus were found to carry a Sox4 retroviral integration in one Pu.1 allele, suggesting that downregulation of Pu.1 may cooperate with Sox4 in AML induction. Since the other Pu.1 allele remains intact in these AMLs and a 50% decrease in Pu.1 expression is not sufficient to induce AML, we hypothesized that Sox4 might further downregulate Pu.1 expression in these AMLs. To test this hypothesis, we transfected HL60 promyelocytes with an expression vector carrying both GFP and Sox4 cDNAs or a GFP vector control. Transfected GFP+ cells were purified by flow cytometry and Pu.1 mRNA levels were analyzed by real-time RT-PCR. Pu.1 mRNA levels were consistently downregulated 4 to 10 fold in cells transfected with Sox4 cDNA compared to cells transfected with the vector control, while Beta-actin mRNA levels were maintained constant, confirming that overexpression of Sox4 downregulates Pu.1 expression in myeloid cells. The decrease of Pu.1 mRNA was observed as early as 8 hours after Sox4 transfection, further suggesting that Sox4 may directly repress the Pu.1 promoter in myeloid cells. Consistent with this, analysis of a published microarray databases comprising 285 de novo AML patient samples showed that SOX4 expression is significantly negatively correlated with Pu.1 expression (r= -0.337, p-value<0.001). In order to confirm that downregulation of Pu.1 cooperates with Sox4 in AML induction, we infected Pu.1 heterozygous knockout or wild type bone marrow cells with the Sox4 retrovirus and then monitored the time of AML development in transplanted mice. An increased penetrance of myeloid leukemia was observed in mice transplanted with Sox4-infected Pu.1 +/- bone marrow (95%) compared to mice receiving Sox4-infected wild type marrow (60%, p<0.001). Myeloid leukemia was confirmed by histology in all animals (100%) of the Sox4-infected Pu.1 +/ cohort. A Southern blot with a Sox4 probe confirmed clonal integrations. Consistent with our hypothesis, integration site analysis of the Sox4-infected Pu.1 +/- cohort tumor spleen DNA could not detect a Pu.1 integration site. Binding motif analysis found a Sox4 binding site in an upper regulatory element (URE) 14 kb upstream of the Pu.1 gene. Chromatin immunohybridization (ChIP) with a Sox4 antibody performed in 32D clone 3 lymphoblasts confirmed binding in a highly conserved area of the Pu.1 upstream control region. An electromobility shift assay (EMSA) is currently pursued. In summary, these results elucidate how the transcription factor Pu.1 is regulated by Sox4 though an upper regulatory element and can play a role in leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 11 (2) ◽  
pp. 191-200 ◽  
Author(s):  
P Soultanas ◽  
P D Andrews ◽  
D R Burton ◽  
D P Hornby

ABSTRACT The regulation of DNA (cytosine-5) methyltransferase (DNA MeTase) enzyme activity and gene expression was examined in the monoblastoid U937 cell line induced to differentiate with either dibutyryl cyclic AMP (dbcAMP) or phorbol ester. dbcAMP treatment was found to cause the rapid (<4 h) suppression of DNA MeTase specific activity, with no DNA MeTase activity detectable after 10 h. Equally, no DNA MeTase activity was detectable in nuclear extracts of fresh peripheral blood monocytes. Using both a U937 DNA MeTase cDNA and a mouse DNA MeTase cDNA as probes, steady-state levels of DNA MeTase mRNA were found to decline sharply between 4 and 15 h after dbcAMP treatment. No DNA MeTase mRNA was detectable after 20 h of dbcAMP treatment. Nuclear run-on analysis showed there to be only a small (40%) suppression of DNA MeTase gene transcription in cells treated with dbcAMP for 24 h, implying a role for post-transcriptional processes in the regulation of DNA MeTase mRNA levels. The observed decline in DNA MeTase activity/mRNA levels appeared to precede the dbcAMP-induced arrest in DNA replication, as judged by the incorporation of tritiated thymidine into DNA. In contrast to the effect of dbcAMP, treatment of U937 cells with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) led to an overall stimulation of DNA MeTase specific activity. The TPA response was found to be complex and broadly consisted of an early (0–15 h) burst of DNA MeTase activity followed by a more gradual sustained increase in DNA MeTase activity after prolonged (16–40 h) TPA treatment. The early phase of high DNA MeTase activity was not mirrored by an increase in steady-state levels of DNA MeTase mRNA, as judged by Northern blot analysis. However, a substantial induction of DNA MeTase mRNA levels was observed after 20–24 h of TPA treatment. Nuclear run-on analysis showed this not to be due to any significant increase in DNA MeTase gene transcription. The observed increases in DNA MeTase activity/mRNA levels were observed whilst cells were undergoing deproliferation. Interestingly, the addition of TPA and more physiological protein kinase C (PKC) activators, such as diacylglycerol and phosphatidylserine, to DNA MeTase-enriched nuclear extracts generated a 4·5-fold and a 1·5-fold increase in DNA MeTase specific activity respectively. The TPA-induced stimulation of DNA MeTase activity could be inhibited by the PKC inhibitor H-9, implicating a role for PKC in the regulation of DNA MeTase activity in vivo.


2019 ◽  
Author(s):  
Jason Buehler ◽  
Ethan Carpenter ◽  
Sebastian Zeltzer ◽  
Suzu Igarashi ◽  
Michael Rak ◽  
...  

ABSTRACTSustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. Inhibition of EGFR signaling enhances CMV reactivation from latency and increases viral replication, but the mechanisms by which EGFR impacts replication and latency is not known. We demonstrate that HCMV downregulates MEK/ERK and AKT phosphorylation, but not STAT3 or PLCγ for productive replication. Similarly, inhibition of either MEK/ERK or PI3K/AKT, but not STAT or PLCγ, pathways increases viral reactivation from latently infected CD34+hematopoietic progenitor cells (HPCs), defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription. Indeed, EGF-stimulation increased expression of theUL138latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through both PI3K/AKT and MEK/ERK pathways. EGR1 expression is important for the maintenance of HPC stemness and its downregulation drives HPC differentiation and mobilization. We demonstrate that EGR1 binds upstream ofUL138and is sufficient to promoteUL138expression. Further, disruption of EGR1 binding upstream ofUL138prevented CMV from establishing a latent infection in CD34+HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 expression and suppression of replication to establish or maintain viral quiescence.AUTHOR SUMMARYCMV regulates EGFR signaling to balance states of viral latency and replication. CMV blocks downstream PI3K/AKT and MEK/ERK signaling pathways through down-regulation of EGFR at the plasma membrane. PI3K/AKT and MEK/ERK signaling increases expression of the EGR1 transcription factor that is necessary for the maintenance of stem cell stemness. A decrease in EGR1 expression promotes HPC mobilization to the periphery and differentiation, a known stimulus for CMV reactivation. We identified functional EGR1 binding sites upstream of theUL138gene and EGR-1 binding stimulatesUL138expression. Additionally, down-regulation of EGR1 by CMV miR-US22 decreasesUL138expression emphasizing the importance of this transcription factor in expression of this latency gene. Lastly, we demonstrate that a CMV mutant virus lacking an upstream EGR1 binding site is unable to establish latency in CD34+HPCs. This study defines one mechanism by which EGFR signaling impacts viral gene expression to promote CMV latency.


Blood ◽  
1999 ◽  
Vol 93 (10) ◽  
pp. 3369-3378 ◽  
Author(s):  
Margaret Coutts ◽  
Kunyuan Cui ◽  
Kerry L. Davis ◽  
Joan Cleves Keutzer ◽  
Arthur J. Sytkowski

The hematopoietic growth factor erythropoietin (Epo) triggers changes in the expression of genes that encode important regulators of erythroid cell growth and differentiation. We now report that Epo markedly upregulates chop (gadd153) expression and that this transcription factor plays a role in erythropoiesis. Using a differential hybridization assay, we isolated a full-length cDNA ofchop as an Epo upregulated gene in Rauscher murine erythroleukemia cells. RNase protection assays demonstrated that Epo or dimethyl sulfoxide induction increased steady-state mRNA levels 10- to 20-fold after 24 to 48 hours. Western blot analysis confirmed a marked increase in CHOP protein. Among the other c/ebp family members, only c/ebp β was also upregulated during erythroid differentiation. Among normal hematopoietic cells examined, steady-state mRNA levels were highest in erythroid cells, with levels peaking during terminal differentiation. Transient overexpression ofchop in Rauscher cells resulted in a significant increase in Epo- or dimethyl sulfoxide (DMSO)-induced hemoglobinization, further linking chop upregulation to erythroid differentiation. Artificial downregulation of chop in normal murine bone marrow cells with antisense oligodeoxynucleotides inhibited colony-forming unit-erythroid (CFU-E)–derived colony growth in a concentration-dependent manner. Burst-forming unit-erythroid (BFU-E)–derived colony growth was not affected. Using a Far Western type of analysis, we detected several potential CHOP binding partners among the nuclear proteins of Rauscher cells. Importantly, the number and relative abundance of these proteins changed with differentiation. The results strongly suggest that CHOP plays a role in erythropoiesis, possibly through interactions with both C/EBP and non-C/EBP family members.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2633-2633
Author(s):  
Georg Aue ◽  
Yang Du ◽  
Nancy A. Jenkins ◽  
Cynthia E. Dunbar ◽  
Neal G. Copeland

Abstract Mice that express 20% the normal levels of the Ets transcription factor PU.1 develop AML, unlike mice that express 50% or 80% the normal levels, indicating that PU.1 is a dosage-sensitive tumor suppressor gene. In addition, 3 of 13 AMLs induced by transplanting mice with cells transduced with a Sox4 oncogene-containing retrovirus were found to carry a Sox4 retroviral integration in one PU.1 allele, suggesting that downregulation of PU.1 may cooperate with Sox4 in AML induction. Since the other PU.1 allele remains intact in these AMLs and a 50% decrease in PU.1 expression is not sufficient to induce AML, we hypothesized that Sox4 might further downregulate PU.1 expression in these AMLs. To test this hypothesis, we transfected HL60 cells with an expression vector carrying GFP and Sox4 cDNA or a GFP vector control alone. PU.1 mRNA levels were consistently downregulated 4 to 10 fold in cells transfected with Sox4 cDNA compared to cells transfected with the vector control, confirming that overexpression of Sox4 downregulates PU.1 expression in myeloid cells. The decrease of PU.1 mRNA was observed as early as 8 hours after Sox4 transfection, further suggesting that Sox4 may directly interact with PU.1 in myeloid cells. Consistent with this, analysis of 2 published microarray databases comprising 401 de novo AML patient samples showed that SOX4 expression is significantly negatively correlated with PU.1 expression (coefficient: −0.337, P-value: 1E-07). In order to confirm that downregulation of PU.1 cooperates with Sox4 in AML induction, we infected wild type or PU.1 heterozygous knockout bone marrow cells with the Sox4 retrovirus and then monitored the time of AML development in transplanted mice. Results showed increased penetrance (95%) of myeloid leukemia in mice transplanted with Sox4-infected PU +/– bone marrow compared to mice receiving Sox4-infected wild type marrow (60%). Myeloid leukemia was confirmed by histology in all animals of the Sox4-infected PU +/ cohort while T cell lymphoma was diagnosed in 3 animals of the Sox4 wild type cohort. Together, all experiments support the hypothesis that Sox4 cooperates with the transcription factor PU.1.


1995 ◽  
Vol 269 (5) ◽  
pp. L588-L602 ◽  
Author(s):  
K. C. Das ◽  
Y. Lewis-Molock ◽  
C. W. White

The effect of reducing agents, including N-acetylcysteine (NAC), dithiothreitol (DTT), and 2-mercaptoethanol (2-ME) on nuclear transcription factor-kappa B (NF-kappa B) activation and manganese superoxide dismutase (MnSOD) expression was investigated in a pulmonary adenocarcinoma (A549) cell line. NAC, DTT, and 2-ME each activated the transcription factor NF-kappa B and increased steady-state levels of MnSOD mRNA and enzyme activity in these cells. In addition, NAC, DTT, and 2-ME increased chloramphenicol acetyltransferase (CAT) activity in cells transfected with a construct containing the CAT gene under the control of the rat MnSOD promoter. SOD and catalase (500 U/ml) plus ethanol (1 mM) did not inhibit activation of NF-kappa B or elevation of steady-state MnSOD mRNA levels by NAC, DTT, or 2-ME. Controls in which comparable amounts of O2-. to those produced by thiols were generated by hypoxanthine and xanthine oxidase, or in which H2O2 was added directly, had neither activated NF-kappa B nor elevated MnSOD mRNA. This shows that reactive oxygen intermediates, which may be formed during autooxidation, may not contribute to activation of NF-kappa B. Because the MnSOD promoter also contains potential binding sites for other transcription factors, such as promoter-selective transcription factor-1 (SP-1), activator protein-1 (AP-1), AP-2, adenosine 3',5'-cyclic monophosphate-regulator element binding factor (CREB), and transcription factor IID complex (TFIID), the effect of thiols on their activation also were evaluated. In contrast to findings with NF-kappa B, there was only minor activation of AP-1 by thiols, and none of the other transcription factors were activated by thiols. AP-1 activation was inhibited by catalase (500 U/ml) plus SOD plus ethanol (1 mM). Addition of 700 microM H2O2 also activated AP-1, and catalase at 500 U/ml prevented this activation. This indicates that H2O2 produced as a result of autooxidation of thiols can activate AP-1 but not NF-kappa B. Thus a close association between exposure to reducing agents, activation of NF-kappa B, and elevation of MnSOD gene expression is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document