scholarly journals Internalization of Echovirus 1 in Caveolae

2002 ◽  
Vol 76 (4) ◽  
pp. 1856-1865 ◽  
Author(s):  
Varpu Marjomäki ◽  
Vilja Pietiäinen ◽  
Heli Matilainen ◽  
Paula Upla ◽  
Johanna Ivaska ◽  
...  

ABSTRACT Echovirus 1 (EV1) is a human pathogen which belongs to the Picornaviridae family of RNA viruses. We have analyzed the early events of infection after EV1 binding to its receptor α2β1 integrin and elucidated the route by which EV1 gains access to the host cell. EV1 binding onto the cell surface and subsequent entry resulted in conformational changes of the viral capsid as demonstrated by sucrose gradient sedimentation analysis. After 15 min to 2 h postinfection (p.i.) EV1 capsid proteins were seen in vesicular structures that were negative for markers of the clathrin-dependent endocytic pathway. In contrast, immunofluorescence confocal microscopy showed that EV1, α2β1 integrin, and caveolin-1 were internalized together in vesicular structures to the perinuclear area. Electron microscopy showed the presence of EV1 particles inside caveolae. Furthermore, infective EV1 could be isolated with anti-caveolin-1 beads 15 min p.i., confirming a close association with caveolin-1. Finally, the expression of dominant negative caveolin in cells markedly inhibited EV1 infection, indicating the importance of caveolae for the viral replication cycle of EV1.

2010 ◽  
Vol 84 (7) ◽  
pp. 3666-3681 ◽  
Author(s):  
Outi Heikkilä ◽  
Petri Susi ◽  
Tuire Tevaluoto ◽  
Heidi Härmä ◽  
Varpu Marjomäki ◽  
...  

ABSTRACT Coxsackievirus A9 (CAV9) is a member of the human enterovirus B species within the Enterovirus genus of the family Picornaviridae. It has been shown to utilize αV integrins, particularly αVβ6, as its receptors. The endocytic pathway by which CAV9 enters human cells after the initial attachment to the cell surface has so far been unknown. Here, we present a systematic study concerning the internalization mechanism of CAV9 to A549 human lung carcinoma cells. The small interfering RNA (siRNA) silencing of integrin β6 subunit inhibited virus proliferation, confirming that αVβ6 mediates the CAV9 infection. However, siRNAs against integrin-linked signaling molecules, such as Src, Fyn, RhoA, phosphatidylinositol 3-kinase, and Akt1, did not reduce CAV9 proliferation, suggesting that the internalization of the virus does not involve integrin-linked signaling events. CAV9 endocytosis was independent of clathrin or caveolin-1 but was restrained by dynasore, an inhibitor of dynamin. The RNA interference silencing of β2-microglobulin efficiently inhibited virus infection and caused CAV9 to accumulate on the cell surface. Furthermore, CAV9 infection was found to depend on Arf6 as both silencing of this molecule by siRNA and the expression of a dominant negative construct resulted in decreased virus infection. In conclusion, the internalization of CAV9 to A549 cells follows an endocytic pathway that is dependent on integrin αVβ6, β2-microglobulin, dynamin, and Arf6 but independent of clathrin and caveolin-1.


2017 ◽  
Vol 28 (22) ◽  
pp. 3095-3111 ◽  
Author(s):  
Courtney A. Copeland ◽  
Bing Han ◽  
Ajit Tiwari ◽  
Eric D. Austin ◽  
James E. Loyd ◽  
...  

Caveolin-1 (CAV1) is an essential component of caveolae and is implicated in numerous physiological processes. Recent studies have identified heterozygous mutations in the CAV1 gene in patients with pulmonary arterial hypertension (PAH), but the mechanisms by which these mutations impact caveolae assembly and contribute to disease remain unclear. To address this question, we examined the consequences of a familial PAH-associated frameshift mutation in CAV1, P158PfsX22, on caveolae assembly and function. We show that C-terminus of the CAV1 P158 protein contains a functional ER-retention signal that inhibits ER exit and caveolae formation and accelerates CAV1 turnover in Cav1–/– MEFs. Moreover, when coexpressed with wild-type (WT) CAV1 in Cav1–/– MEFs, CAV1-P158 functions as a dominant negative by partially disrupting WT CAV1 trafficking. In patient skin fibroblasts, CAV1 and caveolar accessory protein levels are reduced, fewer caveolae are observed, and CAV1 complexes exhibit biochemical abnormalities. Patient fibroblasts also exhibit decreased resistance to a hypo-osmotic challenge, suggesting the function of caveolae as membrane reservoir is compromised. We conclude that the P158PfsX22 frameshift introduces a gain of function that gives rise to a dominant negative form of CAV1, defining a new mechanism by which disease-associated mutations in CAV1 impair caveolae assembly.


2000 ◽  
Vol 150 (5) ◽  
pp. 1125-1136 ◽  
Author(s):  
Radhika C. Desai ◽  
Bimal Vyas ◽  
Cynthia A. Earles ◽  
J. Troy Littleton ◽  
Judith A. Kowalchyck ◽  
...  

The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca2+ sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca2+ ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca2+-sensing module. Here, we report that Ca2+ drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca2+ are mediated by a set of conserved acidic Ca2+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca2+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.


2009 ◽  
Vol 297 (2) ◽  
pp. G361-G370 ◽  
Author(s):  
Eikichi Ihara ◽  
Lori Moffat ◽  
Meredith A. Borman ◽  
Jennifer E. Amon ◽  
Michael P. Walsh ◽  
...  

As a regulator of smooth muscle contraction, zipper-interacting protein kinase (ZIPK) can directly phosphorylate the myosin regulatory light chains (LC20) and produce contractile force. Synthetic peptides (SM-1 and AV25) derived from the autoinhibitory region of smooth muscle myosin light chain kinase can inhibit ZIPK activity in vitro. Paradoxically, treatment of Triton-skinned ileal smooth muscle strips with AV25, but not SM-1, potentiated Ca2+-independent, microcystin- and ZIPK-induced contractions. The AV25-induced potentiation was limited to ileal and colonic smooth muscles and was not observed in rat caudal artery. Thus the potentiation of Ca2+-independent contractions by AV25 appeared to be mediated by a mechanism unique to intestinal smooth muscle. AV25 treatment elicited increased phosphorylation of LC20 (both Ser-19 and Thr-18) and myosin phosphatase-targeting subunit (MYPT1, inhibitory Thr-697 site), suggesting involvement of a Ca2+-independent LC20 kinase with coincident inhibition of myosin phosphatase. The phosphorylation of the inhibitor of myosin phosphatase, CPI-17, was not affected. The AV25-induced potentiation was abolished by pretreatment with staurosporine, a broad-specificity kinase inhibitor, but specific inhibitors of Rho-associated kinase, PKC, and MAPK pathways had no effect. When a dominant-negative ZIPK [kinase-dead ZIPK(1–320)-D161A] was added to skinned ileal smooth muscle, the potentiation of microcystin-induced contraction by AV25 was blocked. Furthermore, pretreatment of skinned ileal muscle with SM-1 abolished AV25-induced potentiation. We conclude, therefore, that, even though AV25 is an in vitro inhibitor of ZIPK, activation of the ZIPK pathway occurs following application of AV25 to permeabilized ileal smooth muscle. Finally, we propose a mechanism whereby conformational changes in the pseudosubstrate region of ZIPK permit augmentation of ZIPK activity toward LC20 and MYPT1 in situ. AV25 or molecules based on its structure could be used in therapeutic situations to induce contractility in diseases of the gastrointestinal tract associated with hypomotility.


2008 ◽  
Vol 295 (5) ◽  
pp. G965-G976 ◽  
Author(s):  
Elena V. Vassilieva ◽  
Kirsten Gerner-Smidt ◽  
Andrei I. Ivanov ◽  
Asma Nusrat

Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of β1-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, β1-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent β1-integrin internalization. However, β1-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized β1-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased β1-integrin endocytosis. Our data suggest that, in migrating IEC, β1-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.


2002 ◽  
Vol 13 (11) ◽  
pp. 3976-3988 ◽  
Author(s):  
Jung Min Han ◽  
Yong Kim ◽  
Jun Sung Lee ◽  
Chang Sup Lee ◽  
Byoung Dae Lee ◽  
...  

Phospholipase D (PLD) has been suggested to mediate epidermal growth factor (EGF) signaling. However, the molecular mechanism of EGF-induced PLD activation has not yet been elucidated. We investigated the importance of the phosphorylation and compartmentalization of PLD1 in EGF signaling. EGF treatment of COS-7 cells transiently expressing PLD1 stimulated PLD1 activity and induced PLD1 phosphorylation. The EGF-induced phosphorylation of threonine147 was completely blocked and the activity of PLD1 attenuated by point mutations (S2A/T147A/S561A) of PLD1 phosphorylation sites. The expression of a dominant negative PKCα mutant by adenovirus-mediated gene transfer greatly inhibited the phosphorylation and activation of PLD1 induced by EGF in PLD1-transfected COS-7 cells. EGF-induced PLD1 phosphorylation occurred primarily in the caveolin-enriched membrane (CEM) fraction, and the kinetics of PLD1 phosphorylation in the CEM were strongly correlated with PLD1 phosphorylation in the total membrane. Interestingly, EGF-induced PLD1 phosphorylation and activation and the coimmunoprecipitation of PLD1 with caveolin-1 and the EGF receptor in the CEM were significantly attenuated in the palmitoylation-deficient C240S/C241S mutant, which did not localize to the CEM. Immunocytochemical analysis revealed that wild-type PLD1 colocalized with caveolin-1 and the EGF receptor and that phosphorylated PLD1 was localized exclusively in the plasma membrane, although some PLD1 was also detected in vesicular structures. Transfection of wild-type PLD1 but not of C240S/C241S mutant increased EGF-induced raf-1 translocation to the CEM and ERK phosphorylation. This study shows, for the first time, that EGF-induced PLD1 phosphorylation and activation occur in the CEM and that the correct localization of PLD1 to the CEM via palmitoylation is critical for EGF signaling.


2018 ◽  
Vol 87 (1) ◽  
pp. 871-896 ◽  
Author(s):  
Marcel Mettlen ◽  
Ping-Hung Chen ◽  
Saipraveen Srinivasan ◽  
Gaudenz Danuser ◽  
Sandra L. Schmid

Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps—initiation, cargo selection, maturation, and fission—and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.


2010 ◽  
Vol 299 (5) ◽  
pp. C1015-C1027 ◽  
Author(s):  
Corina M. Balut ◽  
Yajuan Gao ◽  
Sandra A. Murray ◽  
Patrick H. Thibodeau ◽  
Daniel C. Devor

The number of intermediate-conductance, Ca2+-activated K+ channels (KCa3.1) present at the plasma membrane is deterministic in any physiological response. However, the mechanisms by which KCa3.1 channels are removed from the plasma membrane and targeted for degradation are poorly understood. Recently, we demonstrated that KCa3.1 is rapidly internalized from the plasma membrane, having a short half-life in both human embryonic kidney cells (HEK293) and human microvascular endothelial cells (HMEC-1). In this study, we investigate the molecular mechanisms controlling the degradation of KCa3.1 heterologously expressed in HEK and HMEC-1 cells. Using immunofluorescence and electron microscopy, as well as quantitative biochemical analysis, we demonstrate that membrane KCa3.1 is targeted to the lysosomes for degradation. Furthermore, we demonstrate that either overexpressing a dominant negative Rab7 or short interfering RNA-mediated knockdown of Rab7 results in a significant inhibition of channel degradation rate. Coimmunoprecipitation confirmed a close association between Rab7 and KCa3.1. On the basis of these findings, we assessed the role of the ESCRT machinery in the degradation of heterologously expressed KCa3.1, including TSG101 [endosomal sorting complex required for transport (ESCRT)-I] and CHMP4 (ESCRT-III) as well as VPS4, a protein involved in the disassembly of the ESCRT machinery. We demonstrate that TSG101 is closely associated with KCa3.1 via coimmunoprecipitation and that a dominant negative TSG101 inhibits KCa3.1 degradation. In addition, both dominant negative CHMP4 and VPS4 significantly decrease the rate of membrane KCa3.1 degradation, compared with wild-type controls. These results are the first to demonstrate that plasma membrane-associated KCa3.1 is targeted for lysosomal degradation via a Rab7 and ESCRT-dependent pathway.


2001 ◽  
Vol 12 (8) ◽  
pp. 2257-2274 ◽  
Author(s):  
Raul Rojas ◽  
Wily G. Ruiz ◽  
Som-Ming Leung ◽  
Tzuu-Shuh Jou ◽  
Gerard Apodaca

Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.


2010 ◽  
Vol 298 (1) ◽  
pp. C85-C97 ◽  
Author(s):  
Andreas Mykoniatis ◽  
Le Shen ◽  
Mary Fedor-Chaiken ◽  
Jun Tang ◽  
Xu Tang ◽  
...  

In secretory epithelial cells, the basolateral Na+-K+-2Cl− cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl− secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells. However, the specific endocytic entry pathway has not been defined. We used a Madin-Darby canine kidney (MDCK) cell line stably transfected with enhanced green fluorescent protein (EGFP)-NKCC1 to map NKCC1 entry during PMA exposure. At given times, we fixed and stained the cells with specific markers (e.g., dynamin II, clathrin heavy chain, and caveolin-1). We also used chlorpromazine, methyl-β-cyclodextrin, amiloride, and dynasore, blockers of the clathrin, caveolin, and macropinocytosis pathways and the vesicle “pinchase” dynamin, respectively. We found that PMA caused dose- and time-dependent NKCC1 endocytosis. After 2.5 min of PMA exposure, ∼80% of EGFP-NKCC1 endocytic vesicles colocalized with clathrin and ∼40% colocalized with dynamin II and with the transferrin receptor, the uptake of which is also mediated by clathrin-coated vesicles. We did not observe significant colocalization of EGFP-NKCC1 endocytic vesicles with caveolin-1, a marker of the caveolae-mediated endocytic pathway. We quantified the effect of each inhibitor on PMA-induced EGFP-NKCC1 endocytosis and found that only chlorpromazine and dynasore caused significant inhibition compared with the untreated control (61% and 25%, respectively, at 2.5 min). Together, these results strongly support the conclusion that PMA-stimulated NKCC1 endocytosis is associated with a clathrin pathway.


Sign in / Sign up

Export Citation Format

Share Document