scholarly journals Strong CD8 T-Cell Responses following Coimmunization with Plasmids Expressing the Dominant pp89 and Subdominant M84 Antigens of Murine Cytomegalovirus Correlate with Long-Term Protection against Subsequent Viral Challenge

2002 ◽  
Vol 76 (5) ◽  
pp. 2100-2112 ◽  
Author(s):  
Ming Ye ◽  
Christopher S. Morello ◽  
Deborah H. Spector

ABSTRACT We previously showed that intradermal immunization with plasmids expressing the murine cytomegalovirus (MCMV) protein IE1-pp89 or M84 protects against viral challenge and that coimmunization has a synergistic protective effect (C. S. Morello, L. D. Cranmer, and D. H. Spector, J. Virol. 74:3696-3708, 2000). Using an intracellular gamma interferon cytokine staining assay, we have now characterized the CD8+ T-cell response after DNA immunization with pp89, M84, or pp89 plus M84. The pp89- and M84-specific CD8+ T-cell responses peaked rapidly after three immunizations. DNA immunization and MCMV infection generated similar levels of pp89-specific CD8+ T cells. In contrast, a significantly higher level of M84-specific CD8+ T cells was elicited by DNA immunization than by MCMV infection. Fusion of ubiquitin to pp89 enhanced the CD8+ T-cell response only under conditions where vaccination was suboptimal. Three immunizations with either pp89, M84, or pp89 plus M84 DNA also provided significant protection against MCMV infection for at least 6 months, with the best protection produced by coimmunization. A substantial percentage of antigen-specific CD8+ T cells remained detectable, and they responded rapidly to the MCMV challenge. These results underscore the importance of considering antigens that do not appear to be highly immunogenic during infection as DNA vaccine candidates.

2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2008 ◽  
Vol 82 (16) ◽  
pp. 8161-8171 ◽  
Author(s):  
Kara S. Cox ◽  
James H. Clair ◽  
Michael T. Prokop ◽  
Kara J. Sykes ◽  
Sheri A. Dubey ◽  
...  

ABSTRACT Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed.


Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50 ◽  
Author(s):  
Georgina Bowyer ◽  
Tommy Rampling ◽  
Jonathan Powlson ◽  
Richard Morter ◽  
Daniel Wright ◽  
...  

Immunogenicity of T cell-inducing vaccines, such as viral vectors or DNA vaccines and Bacillus Calmette-Guérin (BCG), are frequently assessed by cytokine-based approaches. While these are sensitive methods that have shown correlates of protection in various vaccine studies, they only identify a small proportion of the vaccine-specific T cell response. Responses to vaccination are likely to be heterogeneous, particularly when comparing prime and boost or assessing vaccine performance across diverse populations. Activation-induced markers (AIM) can provide a broader view of the total antigen-specific T cell response to enable a more comprehensive evaluation of vaccine immunogenicity. We tested an AIM assay for the detection of vaccine-specific CD4+ and CD8+ T cell responses in healthy UK adults vaccinated with viral vectored Ebola vaccine candidates, ChAd3-EBO-Z and MVA-EBO-Z. We used the markers, CD25, CD134 (OX40), CD274 (PDL1), and CD107a, to sensitively identify vaccine-responsive T cells. We compared the use of OX40+CD25+ and OX40+PDL1+ in CD4+ T cells and OX40+CD25+ and CD25+CD107a+ in CD8+ T cells for their sensitivity, specificity, and associations with other measures of vaccine immunogenicity. We show that activation-induced markers can be used as an additional method of demonstrating vaccine immunogenicity, providing a broader picture of the global T cell response to vaccination.


2007 ◽  
Vol 81 (14) ◽  
pp. 7766-7775 ◽  
Author(s):  
Christopher S. Morello ◽  
Laura A. Kelley ◽  
Michael W. Munks ◽  
Ann B. Hill ◽  
Deborah H. Spector

ABSTRACT Human cytomegalovirus (HCMV) establishes a lifelong infection with the potential for reinfection or viral transmission even in the presence of strong and diverse CD8 T-lymphocyte responses. This suggests that the CMVs skew the host T-cell response in order to favor viral persistence. In this study, we hypothesized that the essential, nonstructural proteins that are highly conserved among the CMVs may represent a novel class of T-cell targets for vaccine-mediated protection due to their requirements for expression and sequence stability, but that the observed subdominance of these antigens in the CMV-infected host results from the virus limiting the T-cell responses to otherwise-protective specificities. We found that DNA immunization of mice with the murine CMV (MCMV) homologs of HCMV DNA polymerase (M54) or helicase (M105) was protective against virus replication in the spleen following systemic challenge, with the protection level elicited by the M54 DNA being comparable to that of DNA expressing the immunodominant IE1 (pp89). Intracellular gamma interferon staining of CD8 T cells from mice immunized with either the M54 or M105 DNAs showed strong primary responses that recalled rapidly after viral challenge. M54- and M105-specific CD8 T cells were detected after the primary MCMV infection, but their levels were not consistently above the background level. The conserved, essential proteins of the CMVs thus represent a novel class of CD8 T-cell targets that may contribute to a successful HCMV vaccine strategy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4096-4096
Author(s):  
Katayoun Rezvani ◽  
Agnes S. M. Yong ◽  
Stephan Mielke ◽  
Behnam Jafarpour ◽  
Bipin N. Savani ◽  
...  

Abstract Abstract 4096 Poster Board III-1031 We previously demonstrated the immunogenicity of a combined vaccine approach employing two leukemia-associated antigenic peptides, PR1 and WT1 (Rezvani Blood 2008). Eight patients with myeloid malignancies received one subcutaneous 0.3 mg and 0.5 mg dose each of PR1 and WT1 vaccines in Montanide adjuvant, with 100 μg of granulocyte-macrophage colony-stimulating factor (GM-CSF). CD8+ T-cell responses against PR1 or WT1 were detected in all patients as early as 1 week post-vaccination. However, responses were only sustained for 3-4 weeks. The emergence of PR1 or WT1-specific CD8+ T-cells was associated with a significant but transient reduction in minimal residual disease (MRD) as assessed by WT1 expression, suggesting a vaccine-induced anti-leukemia response. Conversely, loss of response was associated with reappearance of WT1 transcripts. We hypothesized that maintenance of sustained or at least repetitive responses may require frequent boost injections. We therefore initiated a phase 2 study of repeated vaccination with PR1 and WT1 peptides in patients with myeloid malignancies. Five patients with acute myeloid leukemia (AML) and 2 patients with myelodysplastic syndrome (MDS) were recruited to receive 6 injections at 2 week intervals of PR1 and WT1 in Montanide adjuvant, with GM-CSF as previously described. Six of 7 patients completed 6 courses of vaccination and follow-up as per protocol, to monitor toxicity and immunological responses. Responses to PR1 or WT1 vaccine were detected in all patients after only 1 dose of vaccine. However, additional boosting did not further increase the frequency of PR1 or WT1-specific CD8+ T-cell response. In 4/6 patients the vaccine-induced T-cell response was lost after the fourth dose and in all patients after the sixth dose of vaccine. To determine the functional avidity of the vaccine-induced CD8+ T-cell response, the response of CD8+ T-cells to stimulation with 2 concentrations of PR1 and WT1 peptides (0.1 and 10 μM) was measured by IC-IFN-γ staining. Vaccination led to preferential expansion of low avidity PR1 and WT1 specific CD8+ T-cell responses. Three patients (patients 4, 6 and 7) returned 3 months following the 6th dose of PR1 and WT1 peptide injections to receive a booster vaccine. Prior to vaccination we could not detect the presence of PR1 and WT1 specific CD8+ T-cells by direct ex-vivo tetramer and IC-IFN-γ assay or with 1-week cultured IFN-γ ELISPOT assay, suggesting that vaccination with PR1 and WT1 peptides in Montanide adjuvant does not induce memory CD8+ T-cell responses. This observation is in keeping with recent work in a murine model where the injection of minimal MHC class I binding peptides derived from self-antigens mixed with IFA adjuvant resulted in a transient effector CD8+ T cell response with subsequent deletion of these T cells and failure to induce CD8+ T cell memory (Bijker J Immunol 2007). This observation can be partly explained by the slow release of vaccine peptides from the IFA depot without systemic danger signals, leading to presentation of antigen in non-inflammatory lymph nodes by non-professional antigen presenting cells (APCs). An alternative explanation for the transient vaccine-induced immune response may be the lack of CD4+ T cell help. In summary these data support the immunogenicity of PR1 and WT1 peptide vaccines. However new approaches will be needed to induce long-term memory responses against leukemia antigens. To avoid tolerance induction we plan to eliminate Montanide adjuvant and use GM-CSF alone. Supported by observations that the in vivo survival of CD8+ T-effector cells against viral antigens are improved by CD4+ helper cells, we are currently attempting to induce long-lasting CD8+ T-cell responses to antigen by inducing CD8+ and CD4+ T-cell responses against class I and II epitopes of WT1 and PR1. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21032-21032
Author(s):  
K. N. Heller ◽  
P. G. Steinherz ◽  
C. S. Portlock ◽  
C. Münz

21032 Background: Epstein-Barr virus (EBV) asymptomatically establishes persistent infections in more than 90% of the adult population. However, due to effective immune control, only a minority of infected carriers develops spontaneous EBV-associated lymphomas. Since EBV nuclear antigen-1 (EBNA1) is the only protein expressed in all proliferating EBV infected cells we hypothesize that EBNA1 specific immune response is critical in preventing EBV-positive lymphomas. Methods: After informed consent, peripheral blood from healthy volunteers and lymphoma patients (prior to therapy- no evidence of cytopenia) were stimulated (ex vivo) with overlapping peptides covering the immunogenic EBNA1 (aa400–641) sequence. Frequency of EBNA1-specific T-cells were assessed by intracellular cytokine staining and flow cytometric proliferation assays. Cytokine pattern, surface marker phenotype and functional reactivity against EBV specific and control antigens were analyzed. Results: Patient and volunteer immune responses to control antigens and other viruses were assessed and statistically indistinguishable. EBNA1 specific CD4+ T cell responses were detected among 18 of 20 healthy carriers, and among 10 of 16 patients with EBV-negative lymphoma (relative to healthy volunteers p=0.145 via paired student T test). None of the patients with EBV-positive lymphomas (n=8) had a detectable EBNA1-specific CD4+ T-cell response (p<0.003 relative to healthy volunteers and patients with EBV-negative lymphomas). Conclusions: Healthy volunteers and patients with EBV-negative lymphoma have statistically similar EBNA1-specific CD4+ T cell responses. Although patients with EBV-positive lymphoma have intact immune responses to common viruses and antigens, they selectively lack an EBNA1-specific CD4+ T cell response. An intact EBNA1 specific immune response among patients with EBV-negaitve lymphoma implies that lymphoma is not a cause of a selective immune deficiency. On the contrary, these findings suggest that EBNA1-specific CD4+ T cells are critical in the prevention of EBV mediated lymphomas, and a defect in EBNA1 specific immunity may leave EBV carriers suseptible to EBV-positive lymphomas. EBNA1- specific CD4+ T cell function may be a new target for therapies of EBV-associated malignancies. No significant financial relationships to disclose.


2004 ◽  
Vol 78 (20) ◽  
pp. 11233-11245 ◽  
Author(s):  
Ming Ye ◽  
Christopher S. Morello ◽  
Deborah H. Spector

ABSTRACT We previously demonstrated that after vaccination of BALB/c mice with DNA encoding murine cytomegalovirus (MCMV) IE1 or M84, a similar level of protection against MCMV infection was achieved. However, the percentage of antigen-specific CD8+ T cells elicited by IE1 was higher than that by M84 as measured by intracellular cytokine staining when splenocytes were stimulated with an epitope peptide (M. Ye at al., J. Virol. 76:2100-2112, 2002). We show here that after DNA vaccination with M84, a higher percentage of M84-specific CD8+ T cells was detected when splenocytes were stimulated with J774 cells expressing full-length M84. When the defined M84 epitope 297-305 was deleted, the mutant DNA vaccine was still protective against MCMV replication and induced strong M84-specific CD8+-T-cell responses. The M84 gene was subsequently subcloned into three fragments encoding overlapping protein fragments. When mice were immunized with each of the M84 subfragment DNAs, at least two additional protective CD8+-T-cell epitopes were detected. In contrast to strong responses after DNA vaccination, M84-specific CD8+-T-cell responses were poorly induced during MCMV infection. The weak M84-specific response after MCMV infection was not due to poor antigen presentation in antigen-presenting cells, since both J774 macrophages and primary peritoneal macrophages infected with MCMV in vitro were able to efficiently and constitutively present M84-specific epitopes starting at the early phase of infection. These results indicate that antigen presentation by macrophages is not sufficient for M84-specific CD8+-T-cell responses during MCMV infection.


2017 ◽  
Author(s):  
Yiding Yang ◽  
Vitaly V. Ganusov

AbstractMultiple lines of evidence indicate that CD8+T cells are important in the control of HIV-1 (HIV) replication. However, CD8+T cells induced by natural infection cannot eliminate the virus or reduce viral loads to acceptably low levels in most infected individuals. Understanding the basic quantitative features of CD8+T-cell responses induced during the course of HIV infection may therefore inform us about the limits that HIV vaccines, which aim to induce protective CD8+T-cell responses, must exceed. Using previously published experimental data from a cohort of HIV-infected individuals with sampling times from acute to chronic infection we defined the quantitative properties of CD8+T-cell responses to the whole HIV proteome. In contrast with a commonly held view, we found that the relative number of HIV-specific CD8+T-cell responses (response breadth) changed little over the course of infection (first 400 days post-infection), with moderate but statistically significant changes occurring only during the first 35 symptomatic days. This challenges the idea that a change in the T-cell response breadth over time is responsible for the slow speed of viral escape from CD8+T cells in the chronic infection. The breadth of HIV-specific CD8+T-cell responses was not correlated with the average viral load for our small cohort of patients. Metrics of relative immunodominance of HIV-specific CD8+T-cell responses such as Shannon entropy or the Evenness index were also not significantly correlated with the average viral load. Our mathematical-model-driven analysis suggested extremely slow expansion kinetics for the majority of HIV-specific CD8+T-cell responses and the presence of intra- and interclonal competition between multiple CD8+T-cell responses; such competition may limit the magnitude of CD8+T-cell responses, specific to different epitopes, and the overall number of T-cell responses induced by vaccination. Further understanding of mechanisms underlying interactions between the virus and virus-specific CD8+T-cell response will be instrumental in determining which T-cell-based vaccines will induce T-cell responses providing durable protection against HIV infection.AbbreviationsCTLcytotoxic T lymphocyteHIVhuman immunodeficiency virusSEShannon entropyEIEvenness indexPBMCperipheral blood mononuclear cellsSFCspot-forming cellsIFNinterferon


2016 ◽  
Author(s):  
Melissa Lever ◽  
Hong-Sheng Lim ◽  
Philipp Kruger ◽  
John Nguyen ◽  
Nicola Trendel ◽  
...  

AbstractT cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map pMHC affinity onto T cell responses have produced inconsistent patterns of responses preventing formulations of canonical models of T cell signalling. Here, a systematic analysis of T cell responses to 1,000,000-fold variations in both pMHC affinity and dose produced bell-shaped dose-response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signalling incorporating kinetic proofreading with limited signalling coupled to an incoherent feed forward loop (KPL-IFF), that reproduces these observations. We show that the KPL-IFF model correctly predicts the T cell response to antigen co-presentation. Our work offers a general approach for studying cellular signalling that does not require full details of biochemical pathways.Significance statementT cells initiate and regulate adaptive immune responses when their T cell antigen receptors recognise antigens. The T cell response is known to depend on the antigen affinity/dose but the precise relationship, and the mechanisms underlying it, are debated. To resolve the debate, we stimulated T cells with antigens spanning a 1,000,000-fold range in affinity/dose. We found that a different antigen (and hence different affinity) produced the largest T cell response at different doses. Using model identification algorithms, we report a simple mechanistic model that can predict the T cell response from the physiological low affinity regime into the high affinity regime applicable to therapeutic receptors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1354-1354
Author(s):  
Annkristin Heine ◽  
Tobias Holderried ◽  
Frank Grünebach ◽  
Silke Appel ◽  
Markus M. Weck ◽  
...  

Abstract Transfection of dendritic cells (DC) with in vitro transcribed RNA was shown to be a highly efficient method to generate antigen specific T cells, probably due to the induction of a polyclonal T cell response directed against multiple antigens presented on different HLA allels. However, the experimental evidence of this assumption remains to be demonstrated. To accomplish this, we used monocyte derived DC that were electroporated with RNA coding for the CMV pp65 antigen. The induction and expansion of antigen specific CD8+ and CD4+ T cells was assessed using a pannel of peptides derived from this antigen and presented on HLA-A2, -A1, -A11, -A24, -B35 and -B7 in IFN-g ELISPOT, 51Cr-release and proliferation assays. Autologous DC generated from CMV positive healthy donors were pulsed with peptides or transfected with pp65 RNA and utilized as stimulators. Autologous purified CD8+ and CD4+ lymphocytes were used as effector cells. By applying this approach we found that transfection of DC with pp65 RNA induces an expansion of polyclonal CD8+ mediated T cell responses that recognized peptide antigens presented on different HLA molecules. These in vitro generated cytotoxic T cells were able to efficiently lyse DC pulsed with pp65 derived peptides or transfected with the cognate RNA in an antigen specific manner after several in vitro restimulations. Furthermore, this experimental approach allowed the identification of the immunodominace of T cell epitopes presented upon RNA transfection. The HLA-2 directed responses were more pronounced as compared to the HLA-A1, -A11, -A24 or -B35 allels. In contrast, in 7 out of 7 HLA-A2 and HLA-B7 positive donors B7-peptides elicited a stronger T cell response than the A2-peptide, indicating the immunodominance of HLA-B7 epitopes. Interestingly, transfection of DC with pp65 RNA resulted in the induction of CD4+ antigen specific T cells that produced IFN-g and proliferated upon stimulation with transfected DC. In the next set of experiments we analyzed the possible induction of CMV specific T cells that recognize epitopes deduced from different antigens. Co-transfection of DC with a mixture of RNAs coding for the CMV pp65 and IE1 antigens elicited polyclonal T lymphocytes specific for peptides derived from both antigens. More importantly, polyclonal cytotoxic T cells could be elicited in peripheral blood of 2 out of 3 CMV negative donors demonstrating the efficiency of this approach. Our results demonstrate that DC transfected with RNA can elicit polyclonal T cell responses and have implications for the development of immunotherapeutic strategies to target viral or tumor associated antigens.


Sign in / Sign up

Export Citation Format

Share Document