scholarly journals Palmitoylation of the Autographa californica Multicapsid Nucleopolyhedrovirus Envelope Glycoprotein GP64: Mapping, Functional Studies, and Lipid Rafts

2003 ◽  
Vol 77 (11) ◽  
pp. 6265-6273 ◽  
Author(s):  
Sandy Xiaoxin Zhang ◽  
Yu Han ◽  
Gary W. Blissard

ABSTRACT Budded virions (BV) of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) contain a major envelope glycoprotein known as GP64, which was previously shown to be palmitoylated. In the present study, we used truncation and amino acid substitution mutations to map the palmitoylation site to cysteine residue 503. Palmitoylation of GP64 was not detected when Cys503 was replaced with alanine or serine. Palmitoylation-minus forms of GP64 were used to replace wild-type GP64 in AcMNPV, and these viruses were used to examine potential functions of GP64 palmitoylation in the context of the infection cycle. Analysis by immunoprecipitation and cell surface studies revealed that palmitoylation of GP64 did not affect GP64 synthesis or its transport to the cell surface in Sf9 cells. GP64 proteins lacking palmitoylation also mediated low-pH-triggered membrane fusion in a manner indistinguishable from that of wild-type GP64. Cells infected with viruses expressing palmitoylation-minus forms of GP64 produced infectious virions at levels similar to those from cells infected with wild-type AcMNPV. In combination, these data suggest that virus entry and exit in Sf9 cells were not significantly affected by GP64 palmitoylation. To determine whether GP64 palmitoylation affected the association of GP64 with membrane microdomains, the potential association of GP64 with lipid raft microdomains was examined. These experiments showed that: (i) AcMNPV-infected Sf9 cell membranes contain lipid raft microdomains, (ii) GP64 association with lipid rafts was not detected in infected Sf9 cells, and (iii) GP64 palmitoylation did not affect the apparent exclusion of GP64 from lipid raft microdomains.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3188-3188
Author(s):  
Yoko Tabe ◽  
Linhua Jin ◽  
Naoki Ichikawa ◽  
Marina Konopleva ◽  
Michael Andreeff ◽  
...  

Abstract Chronic myeloid leukemia (CML) is driven by the constitutively activated Bcr-Abl tyrosine kinase, which causes deficiency in CXCR4-mediated migration of CML cells to bone marrow (BM) stroma. We have recently demonstrated that exposure of CML cells to imatinib under stromal co-cultures results in increased CXCR4 surface expression, enhanced migration of CML cells towards stromal cell layers and non-pharmacological resistance to imatinib (Jin, Mol Cancer Ther2008;7:48). Lipid rafts are plasma membrane microdomains, highly enriched in cholesterol, sphingolipids and in signaling molecules, which act as signal transduction platforms for a variety of intracellular processes. Lyn is a Src-family tyrosine kinase that is a downstream target of Bcr-Abl, and frequently localizes in lipid raft fractions. Binding to Bcr-Abl results in the constitutive activation of Lyn which impairs SDF-1 Ptasznik, J Exp Med2002;196:667). In this study, we investigated the effects of the tyrosine kinase inhibitor imatinib on the localization of Lyn in the lipid raft structures of CML cells under conditions mimicking the BM microenvironment. Imatinib treatment significantly increased cell surface CXCR4 expression levels in KBM5 CML cells only under mesenchymal stem cell (MSC) co-culture conditions as determined by FACS analysis (p<0.01). However, no significant difference in total CXCR4 protein levels was observed in control and imatinib/MSC co-cultured KBM5 cells by immunoblotting. These findings were confirmed by confocal microscopic analyses, whereby direct coculture of imatinib-treated KBM5 cells with MSC resulted in the increased expression of CXCR4 protein levels on the KBM5 cell surface without change in intracellular protein levels. In turn, KBM5 cells treated with imatinb in the absence of MSC, or co-cultured with MSC alone, showed no significant upregulation of surface CXCR4 expression. Analysis of lipid raft fractions using discontinuous sucrose density gradient fractionation demonstrated that Lyn strongly localized to lipid rafts in imatinib(+)/MSC(+) KBM5 cells compared to control KBM5 cells (5.2-fold increase in the ratio of Lyn to the raft marker flotillin-1). On the contrary, imatinib(+)/MSC(−) or imatinib(−)/MSC(+) conditioned KBM5 cells expressed similar levels of Lyn/flotillin in raft fractions. No significant difference in the levels of total or phosphorylated (Tyr396 and Tyr507) Lyn in whole cell lysates was detected by immunoblotting under all tested conditions.In conclusion, these findings demonstrate, for the first time, that Bcr-Abl oncoprotein inhibits Lyn trafficking to lipid raft microdomains in CML cells. Inhibition of Bcr-Abl by imatinib under stromal co-culture conditions promotes Lyn localization to the lipid rafts which in turn results in increased CXCR4 cell surface expression. These findings indicate that blockade of Lyn expression may ameliorate microenvironment-mediated resistance to tyrosine kinase inhibitors in CML.


2008 ◽  
Vol 295 (3) ◽  
pp. C732-C739 ◽  
Author(s):  
Jayasheel O. Eshcol ◽  
Anne Marie S. Harding ◽  
Tomonori Hattori ◽  
Vivian Costa ◽  
Michael J. Welsh ◽  
...  

Acid-sensing ion channel 3 (ASIC3) is a H+-gated cation channel primarily found in sensory neurons, where it may function as a pH sensor in response to metabolic disturbances or painful conditions. We previously found that ASIC3 interacts with the postsynaptic density protein PSD-95 through its COOH terminus, which leads to a decrease in ASIC3 cell surface expression and H+-gated current. PSD-95 has been implicated in recruiting proteins to lipid rafts, which are membrane microdomains rich in cholesterol and sphingolipids that organize receptor/signaling complexes. We found ASIC3 and PSD-95 coimmunoprecipitated within detergent-resistant membrane fractions. When cells were exposed to methyl-β-cyclodextrin to deplete membrane cholesterol and disrupt lipid rafts, PSD-95 localization to lipid raft fractions was abolished and no longer inhibited ASIC3 current. Likewise, mutation of two cysteine residues in PSD-95 that undergo palmitoylation (a lipid modification that targets PSD-95 to lipid rafts) prevented its inhibition of ASIC3 current and cell surface expression. In addition, we found that cell surface ASIC3 is enriched in the lipid raft fraction. These data suggest that PSD-95 and ASIC3 interact within lipid rafts and that this raft interaction is required for PSD-95 to modulate ASIC3.


2021 ◽  
Author(s):  
Shimin Jiang ◽  
Tai Zhou ◽  
Kejia Zhang ◽  
Yao Zhou ◽  
Zhongcheng Wang ◽  
...  

Abstract Recent studies have shown that monosialoganglioside GM1 deficiency can inhibit the signal transduction process of glial cell line-derived neurotrophic factor (GDNF), which plays an important role in the pathogenesis of Parkinson's disease (PD). However, its specific mechanism still needs to be explored. We inhibited the expression of GM1 by treating cells with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). CCK-8 assay, EdU cell proliferation assay and Western blot assay were used to evaluate the effect of GM1 deficiency on the proliferation and differentiation of SH-SY5Y cells induced by GDNF and on the GDNF-RET signaling pathway. Lipid rafts were isolated by Triton X-100 solubilization and OptiPrepTM density gradient centrifugation. The alterations of lipid raft assembly and the translocation of RET into lipid rafts were evaluated after PDMP treatment. We found that PDMP treatment inhibited the proliferation and differentiation of SH-SY5Y cells induced by GDNF and reduced the phosphorylation of RET and its downstream signaling molecules Erk and Akt. In addition, after PDMP treatment, caveolin-1 and flotillin-1, the prototypical markers of lipid rafts, diffused from lipid rafts to non-lipid raft microdomains, and GDNF-induced RET translocation into lipid rafts was also reduced. These alterations could be partially reversed by adding exogenous GM1. Our results suggest that ganglioside GM1 deficiency could compromise the neurotrophic effects and signals downstream of GDNF by altering the assembly of lipid raft membrane microdomains.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3390-3390
Author(s):  
Yoko Tabe ◽  
Linhua Jin ◽  
Zhou Yixin ◽  
Naoki Ichikawa ◽  
Kazuhisa Iwabuchi ◽  
...  

Abstract Abstract 3390 In chronic myeloid leukemia (CML), the mechanisms of resistance to tyrosine kinase inhibitors (TKIs) beyond the Bcr-Abl mutations are not well understood. We have previously reported that TKI imatinib induces cell-surface expression of the chemokine receptor CXCR4, which results in enhanced migration towards CXCL12-producing BM stromal cells, promotes cell quiescence and development of the microenvironment-mediated, non-pharmacological drug resistance (Jin, Mol Cancer Ther 2008;7:48). Bcr-Abl tyrosine kinase directly activates Src-related kinase Lyn known to frequently localize in lipid raft plasma membrane microdomains and interact with CXCL12/CXCR4 signaling and is directly activated by p210Bcr-Abl. In this study, we investigated the effects of TKIs on the localization and interaction of CXCR4 and Lyn in the lipid rafts, and the role of lipid rafts as the signal transduction platform for CML cell migration. Confocal microscopy and discontinuous sucrose density gradient fractionation demonstrated that in CML cells CXCR4 primarily localized in the non-raft cell surface regions, while Lyn was present both in the lipid raft and non-raft fractions. In turn, the active, phosphorylated form (p-)LynTyr396 is present within the lipid rafts, while inactive p-LynTyr507 in non-raft fractions. Imatinib treatment under co-culture with mesenchymal stem cells (MSC) induced CXCR4 clustering in lipid raft fractions, which was directly co-immunoprecipitaed with Lyn. Under these culture conditions, imatinib repressed p-LynTyr507, but failed to deplete p-LynTyr396. Knock-down of Lyn by siRNA, Src inhibitor treatment, or lipid raft destruction by methyl-b cyclodextrin (MbCD) abrogated imatinib-induced KBM5 migration to MSCs and CXCL12 without affecting CXCR4 surface expression. Consistent with its effects on Src, dual Src/Abl kinase inhibitor dasatinib induced significantly less migration of CML cells to CXCL12 compared with imatinib or nilotinib (p =0.04). In summary, our data indicate that stromal cells interfere with inhibitory effects of TKI on active Lyn (p-Lyn)Tyr396 in CML cells and promote clustering of CXCR4 in lipid rafts where it co-localizes with p-LynTyr396 and facilitates migration of CML cells to the MSC monolayer. Lipid raft disruption by cholesterol depletion inhibit CML cells migration, suggesting that lipid rafts represent one of the key signaling modules responsible for interactions of CML cells with cells of BM niche. We propose that pharmacological disruption of lipid rafts may eliminate BM-resident CML cells through interference with microenvironment-mediated resistance. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 115 (12) ◽  
pp. 2603-2611 ◽  
Author(s):  
Martha Triantafilou ◽  
Kensuke Miyake ◽  
Douglas T. Golenbock ◽  
Kathy Triantafilou

The plasma membrane of cells is composed of lateral heterogeneities,patches and microdomains. These membrane microdomains or lipid rafts are enriched in glycosphingolipids and cholesterol and have been implicated in cellular processes such as membrane sorting and signal transduction. In this study we investigated the importance of lipid raft formation in the innate immune recognition of bacteria using biochemical and fluorescence imaging techniques. We found that receptor molecules that are implicated in lipopolysaccharide (LPS)-cellular activation, such as CD14, heat shock protein(hsp) 70, 90, Chemokine receptor 4 (CXCR4), growth differentiation factor 5(GDF5) and Toll-like receptor 4 (TLR4), are present in microdomains following LPS stimulation. Lipid raft integrity is essential for LPS-cellular activation, since raft-disrupting drugs, such as nystatin or MCD, inhibit LPS-induced TNF-α secretion. Our results suggest that the entire bacterial recognition system is based around the ligation of CD14 by bacterial components and the recruitment of multiple signalling molecules, such as hsp70, hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS ligation, within the lipid rafts.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3352-3359 ◽  
Author(s):  
Claire Abbal ◽  
Martine Lambelet ◽  
Debora Bertaggia ◽  
Carole Gerbex ◽  
Manuel Martinez ◽  
...  

Abstract Selectins and their ligand P-selectin glycoprotein ligand-1 (PSGL-1) mediate leukocyte rolling along inflamed vessels. Cell rolling is modulated by selectin interactions with their ligands and by topographic requirements including L-selectin and PSGL-1 clustering on tips of leukocyte microvilli. Lipid rafts are cell membrane microdomains reported to function as signaling platforms. Here, we show that disruption of leukocyte lipid rafts with cholesterol chelating agents depleted raft-associated PSGL-1 and L-selectin and strongly reduced L-, P-, and E-selectin–dependent rolling. Cholesterol repletion reversed inhibition of cell rolling. Importantly, leukocyte rolling on P-selectin induced the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase associated to lipid raft PSGL-1. Furthermore, inhibition of Syk activity or expression, with pharmacologic inhibitors or by RNA interference, strongly reduced leukocyte rolling on P-selectin, but not on E-selectin or PSGL-1. These observations identify novel regulatory mechanisms of leukocyte rolling on selectins with a strong dependency on lipid raft integrity and Syk activity.


2013 ◽  
Vol 16 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Caroline Nothdurfter ◽  
Sascha Tanasic ◽  
Barbara Di Benedetto ◽  
Manfred Uhr ◽  
Eva-Maria Wagner ◽  
...  

Abstract Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3634-3634
Author(s):  
Kim E. Olson ◽  
Marinus Johan Broekman ◽  
Ashley E. Olson ◽  
Dianne Pulte ◽  
Aaron J. Marcus

Abstract Brief trypsin exposure increases apyrase activity in hCD39 expressing cells, as previously reported (Schulte am Esch et al, Biochemistry38:2248, 1999). Since regulated proteolytic cleavage of CD39 would allow for a rapid response to extracellular stimuli, we studied the relationship between observed CD39 cleavage and enzymatic activity. We generated N- and C-terminal VP16-tagged hCD39 to study CD39 expression, processing, and activity in transiently transfected HEK 293 cells. We found that optimal enzymatic activity of CD39 indeed depends on incorporation into cholesterol-rich plasma membrane domains (lipid "rafts"). Membrane fractions from hCD39 -transfected 293 cells readily hydrolyze ATP. Pretreatment of 293 cells with the cholesterol-depleting agent methyl β cyclodextrin (MBCD) results in a dose-dependent decrease in ATPase activity. In addition, treatment of isolated membranes with MBCD also decreases enzymatic activity. We next performed Western blot analyses of membranes prepared from hCD39-transfected 293 cells treated with membrane-impermeant crosslinking agents. These experiments demonstrated a dose-dependent, MBCD-reversible decrease in monomeric CD39. Taken together, these data demonstrate that CD39 enzyme activity resides in raft-localized CD39. Western blots of membrane fractions from cells transfected with N- or C-terminal VP16-tagged hCD39 show partial cleavage of full-length CD39 to yield a 20kDa N-terminal and 50 kDa C-terminal fragments. Biotinylation studies established that both fragments are expressed on the cell surface. As with full-length CD39, crosslinking results in dose-dependent decreases of both monomeric species. Moreover, prior cholesterol depletion with MBCD abolishes crosslinking. Since the cleavage products of full-length CD39 are expressed on the cell surface and localize to lipid rafts, we examined the relation between CD39 cleavage, ATPase activity and lipid raft localization using a panel of cell permeable protease inhibitors. 293 cells transfected with N-terminal VP16-tagged CD39 were treated with AEBSF (serine protease inhibitor), zYVAD.fmk (caspase inhibitor), zLLY.fmk (calpain inhibitor) or the furin inhibitor Furin I. All inhibitors resulted in dose-dependent decreases in formation of the VP16-tagged N-terminal fragment. Concomitantly, ATPase assays of the membrane fractions demonstrated a corresponding dose-dependent decrease in enzymatic activity. Finally, we established that CD39 cleavage promotes raft localization, since protease inhibition decreased the fraction of CD39 susceptible to crosslinking with all inhibitors tested. In summary, we have established that generation of optimally active, raft-localized CD39 requires prior limited proteolysis of the full-length molecule. Activation of caspase-1 by exposure of cells to ATP leads to processing and release of interleukin family members. We propose that purinergic signaling might also enhance CD39 cleavage in vascular cells by an as yet unidentified protease. Our data suggest that subsequent increased cell surface apyrase activity leads to dampening of purinergic signaling and a resulting increase in antithrombotic activity. Of note, we identified an alternately spliced isoform of CD39 which inhibits cleavage of the full-length molecule.


2004 ◽  
Vol 165 (5) ◽  
pp. 735-746 ◽  
Author(s):  
Anne K. Kenworthy ◽  
Benjamin J. Nichols ◽  
Catha L. Remmert ◽  
Glenn M. Hendrix ◽  
Mukesh Kumar ◽  
...  

Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (>4 μm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.


2002 ◽  
Vol 76 (6) ◽  
pp. 2770-2779 ◽  
Author(s):  
Guangyun Lin ◽  
Gary W. Blissard

ABSTRACT The Autographa californica nucleopolyhedrovirus (AcMNPV) lef-11 gene was previously identified by transient late expression assays as a gene important for viral late gene expression. The lef-11 gene was not previously identified as necessary for DNA replication in transient origin-dependent plasmid DNA replication assays. To examine the role of lef-11 in the context of the infection cycle, we generated a deletion of the lef-11 gene by recombination in an AcMNPV genome propagated as a BACmid in Escherichia coli. The resulting AcMNPV lef-11-null BACmid (vAclef11KO) was unable to propagate in cell culture, although a “repair” AcMNPV BACmid (vAclef11KO-REP), which was generated by transposition of the lef-11 gene into the polyhedrin locus of the vAclef11KO BACmid, was able to replicate in a manner similar to wild-type or control AcMNPV viruses. Thus, the lef-11 gene is essential for viral replication in Sf9 cells. The vAclef11KO BACmid was examined to determine if the defect in viral replication resulted from a defect in DNA replication or from a defect in late transcription. The lef-11-null BACmid and control BACmids were transfected into Sf9 cells, and viral DNA replication was monitored. The viral DNA genome of the lef-11-null BACmid (vAclef11KO) was not amplified, whereas replication and amplification of the genomes of the repair BACmid (vAclef11KO-REP), wild-type AcMNPV, and a nonpropagating gp64-null control BACmid (vAcGUSgp64KO) were readily detected. Northern blot analysis of transcripts from selected early, late, and very late genes showed that late and very late transcription was absent in cells transfected with the lef-11-null BACmid. Thus, in contrast to prior studies using transient replication and late expression assays, studies of a lef-11-null BACmid indicate that LEF-11 is required for viral DNA replication during the infection cycle.


Sign in / Sign up

Export Citation Format

Share Document