scholarly journals Human Papillomavirus Type 16 E7 Peptide-Directed CD8+ T Cells from Patients with Cervical Cancer Are Cross-Reactive with the Coronavirus NS2 Protein

2003 ◽  
Vol 77 (9) ◽  
pp. 5464-5474 ◽  
Author(s):  
Katja Nilges ◽  
Hanni Höhn ◽  
Henryk Pilch ◽  
Claudia Neukirch ◽  
Kirsten Freitag ◽  
...  

ABSTRACT Human papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8+-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8+-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E711-19/20) epitope YMLDLQPET(T) in vitro. CD8+ T cells reacting to the HLA-A2-presented peptide from HPV16 E711-19(20) recognized also the HLA-A2 binding peptide TMLDIQPED (amino acids 52 to 60) from the human coronavirus OC43 NS2 gene product. Establishment of coronavirus NS2-specific, HLA-A2-restricted CD8+-T-cell clones and ex vivo analysis of HPV16 E7 specific T cells obtained by HLA-A2 tetramer-guided sorting from PBL or tumor-infiltrating lymphocytes obtained from patients with cervical cancer showed that cross-reactivity with HPV16 E711-19(20) and coronavirus NS252-60 represents a common feature of this antiviral immune response defined by cytokine production. Zero of 10 patients with carcinoma in situ neoplasia and 3 of 18 patients with cervical cancer showed ≥0.1% HPV16 E7-reactive T cells in CD8+ peripheral blood lymphocytes. In vivo priming with HPV16 was confirmed in patients with cervical cancer or preinvasive HPV16-positive lesions using HLA-A2 tetramer complexes loaded with the E6-derived epitope KLPQLCTEL. In contrast, we could not detect E6-reactive T cells in healthy individuals. These data imply that the measurement of the HPV16 E711-19(20) CD8+-T-cell response may reflect cross-reactivity with a common pathogen and that variant peptides may be employed to drive an effective cellular immune response against HPV.

2005 ◽  
Vol 79 (20) ◽  
pp. 12807-12817 ◽  
Author(s):  
Andrés Báez-Astúa ◽  
Elsa Herráez-Hernández ◽  
Natalio Garbi ◽  
Hilda A. Pasolli ◽  
Victoria Juárez ◽  
...  

ABSTRACT Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (106 infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8+-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein.


2005 ◽  
Vol 79 (16) ◽  
pp. 10514-10527 ◽  
Author(s):  
David G. Brooks ◽  
Luc Teyton ◽  
Michael B. A. Oldstone ◽  
Dorian B. McGavern

ABSTRACT Effective T-cell responses are critical to eradicate acute viral infections and prevent viral persistence. Emerging evidence indicates that robust, early CD4 T-cell responses are important in effectively sustaining CD8 T-cell activity. Herein, we illustrate that virus-specific CD4 T cells are functionally inactivated early during the transition into viral persistence and fail to produce effector cytokines (i.e., interleukin-2 and tumor necrosis factor alpha), thereby compromising an efficient and effective antiviral immune response. Mechanistically, the inactivation occurs at the cellular level and is not an active process maintained by regulatory T cells or antigen-presenting cells. Importantly, a small subpopulation of cells is able to resist inactivation and persist into the chronic phase of infection. However, the virus-specific CD4 T-cell population ultimately undergoes a second round of inactivation, and the cells that had retained functional capacity fail to respond to rechallenge in an acute time frame. Based on these results we propose a biological mechanism whereby early CD4 T-cell inactivation leads to a subsequent inability to sustain cytotoxic T-lymphocyte function, which in turn facilitates viral persistence. Moreover, these studies are likely relevant to chronic/persistent infections of humans (e.g., human immunodeficiency virus, hepatitis C virus, and hepatitis B virus) by providing evidence that a reservoir of virus-specific CD4 T cells can remain functional during chronic infection and represent a potential therapeutic target to stimulate the immune response and establish control of infection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A469-A469
Author(s):  
Bernard Fox ◽  
Tarsem Moudgil ◽  
Traci Hilton ◽  
Noriko Iwamoto ◽  
Christopher Paustian ◽  
...  

BackgroundOutcomes for recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) are dismal and responses to anti-PD-1 appear best in tumors with PD-1+ T cells in proximity to PD-L1+ cells, arguing that improved outcome is associated with a pre-existing anti-cancer immune response. Based on this, we hypothesize that vaccines which prime and/or expand T cells to a spectrum of antigens overexpressed by HNSCC combined with T cell agonists, like anti-GITR, that provide costimulatory signals will improve the anti-PD-1 response rates. We have developed a cancer vaccine, DPV-001, that contains more than 300 proteins for genes overexpressed by HNSCC, encapsulated in a CLEC9A-targeted microvesicle and containing TLR/NOD agonists and DAMPs. Recently, we reported that combining anti-GITR + vaccine + anti-PD-1 augmented therapeutic efficacy in a preclinical model and now plan a phase 1b trial of this combination in patients with advanced HNSCC.MethodsSera from patients receiving DPV-001 as adjuvant therapy for definitively treated NSCLC, were analyzed for IgG responses to human proteins by MAP bead arrays and results compared to TCGA gene expression data sets for HNSCC. HNSCC cell lines were evaluated by RNASeq and peptides were eluted from HLA, analyzed by mass spectroscopy and correlated against MAP bead arrays and TCGA data sets. Tumor-reactive T cells from a vaccinated patient were enriched and expanded, and used in cytokine release assay (CRA) against autologous NSCLC and partially HLA matched allogeneic HNSCC cell lines.ResultsPatients receiving DPV-001 (N=13) made 147 IgG responses to at least 70 proteins for genes overexpressed by HNSCC. Preliminary evaluation of the HNSCC peptidome against the results of MAP bead array identify antigens that are target of a humoral immune response. Additionally, tumor-reactive T cells from DPV-001 vaccinated patient recognize two partially HLA-matched HNSCC targets, but not a mis-matched target.ConclusionsRecent observations from our lab and others have correlated IgG Ab responses with T cell responses to epitopes of the same protein. Based on the data summarized above, we hypothesize that we have induced T cell responses against a broad spectrum of shared cancer antigens that are common among adenocarcinomas and squamous cell cancers. Our planned clinical trial will vaccinate and boost the induced responses by costimulation with anti-GITR and then sequence in delayed anti-PD-1 to relieve checkpoint inhibition. MAP bead arrays and the peptidome library generated above will be used to assess anti-cancer B and T cell responses.Trial RegistrationNCT04470024Ethics ApprovalThe original clinical trial was approved by the Providence Portland Medical Center IRB, approval # 13-046. The proposed clinical trial has not yet been reviewed by the IRB.


2002 ◽  
Vol 76 (15) ◽  
pp. 7418-7429 ◽  
Author(s):  
O. Martin Williams ◽  
Keith W. Hart ◽  
Eddie C. Y. Wang ◽  
Colin M. Gelder

ABSTRACT Human papillomavirus type 11 (HPV-11) infection causes genital warts and recurrent respiratory papillomatosis. While there is compelling evidence that CD4+ T cells play an important role in immune surveillance of HPV-associated diseases, little is known about human CD4+ T-cell recognition of HPV-11. We have investigated the CD4+ T-cell responses of 25 unrelated healthy donors to HPV-11 L1 virus-like particles (VLP). CD4+ T-cell lines from 21 of 25 donors were established. Cell sorting experiments carried out on cells from six donors demonstrated that the response was located in the CD45RAlow CD45ROhigh memory T-cell population. To determine the peptide specificity of these responses, epitope selection was analyzed by using 95 15-mer peptides spanning the entire HPV-11 L1 protein. No single region of L1 was immunodominant; responders recognized between 1 and 10 peptides, located throughout the protein, and peptide responses fell into clear HLA class II restricted patterns. Panels of L1 peptides specific for skin and genital HPV were used to show that the L1 CD4+ T-cell responses were cross-reactive. The degree of cross-reactivity was inversely related to the degree of L1 sequence diversity between these viruses. Finally, responses to HPV-11 L1 peptides were elicited from ex vivo CD45RO+ peripheral blood mononuclear cells, demonstrating that recognition of HPV-11 was a specific memory response and not due to in vitro selection during tissue culture. This is the first study of CD4+ T-cell responses to HPV-11 in healthy subjects and demonstrates marked cross-reactivity with other skin and genital HPV types. This cross-reactivity may be of significance for vaccine strategies against HPV-associated clinical diseases.


2010 ◽  
Vol 17 (10) ◽  
pp. 1576-1583 ◽  
Author(s):  
Mariana O. Diniz ◽  
Marcio O. Lasaro ◽  
Hildegund C. Ertl ◽  
Luís C. S. Ferreira

ABSTRACT Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8+ T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8+ T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4+ T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8+ T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8+ T-cell responses, measured by intracellular gamma interferon (IFN-γ) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2Db -restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 × 105 TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Alba Grifoni ◽  
Hannah Voic ◽  
Sandeep Kumar Dhanda ◽  
Conner K. Kidd ◽  
James D. Brien ◽  
...  

ABSTRACT Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species. IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sophie Steiner ◽  
Franziska Sotzny ◽  
Sandra Bauer ◽  
Il-Kang Na ◽  
Michael Schmueck-Henneresse ◽  
...  

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1980-1980
Author(s):  
Kimberly Noonan ◽  
Lakshmi Rudraraju ◽  
Anna Ferguson ◽  
Amy Sidorski ◽  
Andrea Casildo ◽  
...  

Abstract Background Prevnar, is a multi-valent conjugate vaccine given to children and adults over 50 for the prevention of Streptococcus pneumonia, otis media and pneumococcal pneumonia. The conjugate in Prevnar is a CRM-197 protein molecule which is a nontoxic recombinant Diphtheria toxin. Prevnar serves as an excellent tool in monitoring overall immune response changes in myeloma patients’ pre and post treatment. Humoral B-cell responses can be measured by antibody responses to the pneumococcal antigens, while T cell responses to CRM-197. Clinical Study We previously conducted a study to determine the efficacy of lenalidomide to augment vaccine specific responses in patients with myeloma. Two cohorts of patients were studied. In cohort A (N=10), the first Prevnar vaccine was given two weeks prior to starting lenalidomide and the second vaccine on day 14 of cycle 2 of lenalidomide. In cohort B (N=7), both Prevnar vaccines were given on lenalidomide (day 14 of cycle 2 and 4). As we previously reported patients in cohort B had an overall better B and T cell response to Prevnar compared to cohort A. These responses were due to an overall change in B and T cell phenotype attained with lenalidomide therapy. Results Prospectively, patients in cohort B also had an unexpected overall increase in disease response and in response duration. In Cohort A only 10% of patients responded to therapy while 60% of patients in Cohort B had a clinical response. The patients with a measurable clinical response had a 5-fold increase in the percentage of tumor specific bone marrow (BM) T cells after two vaccinations with Prevnar whereas the non-responding patients had no increase in tumor specific BM T cells. Parelleling the anti-tumor response, responders showed a 15 fold increase in CRM-197 specific BM T cells after the second vaccination. Patients with no clinical response showed minimal CRM-197 T cell immunity. CRM-197 is a specific inhibitor of HB-EGF; syndecan-1 (CD138) is an HB-EGF co-receptor as well as a marker for myeloma plasma cells. We hypothesized that HB-EGF specific responses produced by vaccination with the Prevnar vaccine, and CRM-197 specifically, may have contributed to the overall increased clinical responses in our clinical trial. Responding patients had a 5-fold increase in HB-EGF specific BM T cells after vaccine 2 while clinical non-responders had no increase in HB-EGF specific BM T cells. T cells specificity for purified HB-EGF correlated with both CRM-197 and tumor specific responses. Finally the myeloma cell lines U266, H929, KMS-11 and KMS-12 co-stained for CD138 and HB-EGF with 47% of CD138+ myeloma cells co-expressing HB-EGF. Conclusions We hypothesize that the CRM-197 moiety of the Prevnar vaccine can prime T cell responses against HB-EGF on plasma cells. This immune response, in turn, weakens the tumor stromal interactions in the tumor microenvironment and potentially enhances the anti-tumor efficacy of immunomodulatory drugs such as lenalidomide. Therefore, Prevnar may possibly serve as a candidate anti-myeloma vaccine. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21032-21032
Author(s):  
K. N. Heller ◽  
P. G. Steinherz ◽  
C. S. Portlock ◽  
C. Münz

21032 Background: Epstein-Barr virus (EBV) asymptomatically establishes persistent infections in more than 90% of the adult population. However, due to effective immune control, only a minority of infected carriers develops spontaneous EBV-associated lymphomas. Since EBV nuclear antigen-1 (EBNA1) is the only protein expressed in all proliferating EBV infected cells we hypothesize that EBNA1 specific immune response is critical in preventing EBV-positive lymphomas. Methods: After informed consent, peripheral blood from healthy volunteers and lymphoma patients (prior to therapy- no evidence of cytopenia) were stimulated (ex vivo) with overlapping peptides covering the immunogenic EBNA1 (aa400–641) sequence. Frequency of EBNA1-specific T-cells were assessed by intracellular cytokine staining and flow cytometric proliferation assays. Cytokine pattern, surface marker phenotype and functional reactivity against EBV specific and control antigens were analyzed. Results: Patient and volunteer immune responses to control antigens and other viruses were assessed and statistically indistinguishable. EBNA1 specific CD4+ T cell responses were detected among 18 of 20 healthy carriers, and among 10 of 16 patients with EBV-negative lymphoma (relative to healthy volunteers p=0.145 via paired student T test). None of the patients with EBV-positive lymphomas (n=8) had a detectable EBNA1-specific CD4+ T-cell response (p<0.003 relative to healthy volunteers and patients with EBV-negative lymphomas). Conclusions: Healthy volunteers and patients with EBV-negative lymphoma have statistically similar EBNA1-specific CD4+ T cell responses. Although patients with EBV-positive lymphoma have intact immune responses to common viruses and antigens, they selectively lack an EBNA1-specific CD4+ T cell response. An intact EBNA1 specific immune response among patients with EBV-negaitve lymphoma implies that lymphoma is not a cause of a selective immune deficiency. On the contrary, these findings suggest that EBNA1-specific CD4+ T cells are critical in the prevention of EBV mediated lymphomas, and a defect in EBNA1 specific immunity may leave EBV carriers suseptible to EBV-positive lymphomas. EBNA1- specific CD4+ T cell function may be a new target for therapies of EBV-associated malignancies. No significant financial relationships to disclose.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Simone A. Joosten ◽  
Lucy C. Sullivan ◽  
Tom H. M. Ottenhoff

Human HLA-E can, in addition to self-antigens, also present pathogen-derived sequences, which elicit specific T-cell responses. T-cells recognize their antigen presented by HLA-E highly specifically and have unique functional and phenotypical properties. Pathogen specific HLA-E restricted CD8+T-cells are an interesting new player in the field of immunology. Future work should address their exact roles and relative contributions in the immune response against infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document