scholarly journals Repression and Derepression of Minus-Strand Synthesis in a Plus-Strand RNA Virus Replicon

2004 ◽  
Vol 78 (14) ◽  
pp. 7619-7633 ◽  
Author(s):  
Guohua Zhang ◽  
Jiuchun Zhang ◽  
Anne E. Simon

ABSTRACT Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3′-terminal bases. Deletion of satC 3′-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3′ end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3′-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3′ terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3′ end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3′-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.

2006 ◽  
Vol 80 (18) ◽  
pp. 9181-9191 ◽  
Author(s):  
Jiuchun Zhang ◽  
Guohua Zhang ◽  
Rong Guo ◽  
Bruce A. Shapiro ◽  
Anne E. Simon

ABSTRACT RNA can adopt different conformations in response to changes in the metabolic status of cells, which can regulate processes such as transcription, translation, and RNA cleavage. We previously proposed that an RNA conformational switch in an untranslated satellite RNA (satC) of Turnip crinkle virus (TCV) regulates initiation of minus-strand synthesis (G. Zhang, J. Zhang, A. T. George, T. Baumstark, and A. E. Simon, RNA 12:147-162, 2006). This model was based on the lack of phylogenetically inferred hairpins or a known pseudoknot in the “preactive” structure assumed by satC transcripts in vitro. We now provide evidence that a second pseudoknot (Ψ2), whose disruption reduces satC accumulation in vivo and enhances transcription by the TCV RNA-dependent RNA polymerase in vitro, stabilizes the preactive satC structure. Alteration of either Ψ2 partner caused nearly identical structural changes, including single-stranded-specific cleavages in the pseudoknot sequences and strong cleavages in a distal element previously proposed to mediate the conformational switch. These results indicate that the preactive structure identified in vitro has biological relevance in vivo and support a requirement for this alternative structure and a conformational switch in high-level accumulation of satC in vivo.


2005 ◽  
Vol 79 (1) ◽  
pp. 512-524 ◽  
Author(s):  
Xiaoping Sun ◽  
Guohua Zhang ◽  
Anne E. Simon

ABSTRACT cis-acting sequences and structural elements in untranslated regions of viral genomes allow viral RNA-dependent RNA polymerases to correctly initiate and transcribe asymmetric levels of plus and minus strands during replication of plus-sense RNA viruses. Such elements include promoters, enhancers, and transcriptional repressors that may require interactions with distal RNA sequences for function. We previously determined that a non-sequence-specific hairpin (M1H) in the interior of a subviral RNA (satC) associated with Turnip crinkle virus is required for fitness and that its function might be to bridge flanking sequences (X. Sun and A. E. Simon, J. Virol. 77:7880-7889, 2003). To establish the importance of the flanking sequences in replication and satC-specific virion repression, segments on both sides of M1H were randomized and subjected to in vivo functional selection (in vivo SELEX). Analyses of winning (functional) sequences revealed three different conserved elements within the segments that could be specifically assigned roles in replication, virion repression, or both. One of these elements was also implicated in the molecular switch that releases the 3′ end from its interaction with the repressor hairpin H5, which is possibly involved in controlling the level of minus-strand synthesis.


2020 ◽  
Vol 21 (10) ◽  
pp. 955-964 ◽  
Author(s):  
Mengjie Liu ◽  
John Wade ◽  
Mohammed Akhter Hossain

: Ghrelin is a 28-amino acid octanoylated peptide hormone that is implicated in many physiological and pathophysiological processes. Specific visualization of ghrelin and its cognate receptor using traceable ligands is crucial in elucidating the localization, functions, and expression pattern of the peptide’s signaling pathway. Here 12 representative radio- and fluorescently-labeled peptide-based ligands are reviewed for in vitro and in vivo imaging studies. In particular, the focus is on their structural features, pharmacological properties, and applications in further biochemical research.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1602
Author(s):  
Anna Elizarova ◽  
Alexey Sokolov ◽  
Valeria Kostevich ◽  
Ekaterina Kisseleva ◽  
Evgeny Zelenskiy ◽  
...  

As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.


1989 ◽  
Vol 9 (11) ◽  
pp. 4746-4749 ◽  
Author(s):  
D I Chasman ◽  
J Leatherwood ◽  
M Carey ◽  
M Ptashne ◽  
R D Kornberg

Fusion proteins known to activate transcription in vivo were tested for the ability to stimulate transcription in vitro in a recently developed Saccharomyces cerevisiae RNA polymerase II transcription system. One fusion protein, whose activation domain was derived from the herpesvirus transcriptional activator VP16, gave more than 100-fold stimulation in the in vitro system. The order of effects of the various proteins was the same for transcription in vitro and in vivo, suggesting that the natural mechanism of activation is preserved in vitro.


2002 ◽  
Vol 50 (8) ◽  
pp. 1059-1065 ◽  
Author(s):  
Sherri R. Davies ◽  
Shinji Sakano ◽  
Yong Zhu ◽  
Linda J. Sandell

The control of extracellular matrix (ECM) production is important for the development, maintenance, and repair of cartilage tissues. Matrix molecule synthesis is generally regulated by the rate of gene transcription determined by DNA transcription factors. We have shown that transcription factors Sox9, AP-2, and [delta]EF1 are able to alter the rate of CD-RAP transcription in vitro: Sox9 upregulates, AP-2 exhibits biphasic effects, and [delta]EF1 represses expression of the CD-RAP gene. To correlate these in vitro activities in vivo, transcription factors were co-immunolocalized with ECM proteins in three different cartilage tissues in which the rates of biosynthesis are quite different: articular, meniscal, and growth plate. Immunoreactivities of type II collagen and CD-RAP were higher in growth plate than in either the articular or meniscal cartilages and correlated positively with Sox9 protein. Sox9 staining decreased with hypertrophy and was low in articular and meniscal cartilages. In contrast, AP-2 and [delta]EF1 were low in proliferating chondrocytes but high in lower growth plate, articular, and meniscal cartilages. This increase was also accompanied by intense nuclear staining. These immunohistochemical results are the first to localize both [delta]EF1 and AP-2 to adult articular, meniscal, and growth plate cartilages and provide in vivo correlation of previous molecular biological studies.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Allison Kraus ◽  
Gregory J. Raymond ◽  
Brent Race ◽  
Katrina J. Campbell ◽  
Andrew G. Hughson ◽  
...  

ABSTRACT Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro, only some are transmissible and pathogenic in vivo. To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro. Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood. Here we have compared the combined effects of prion seeding and mutations of prion protein (PrP) on the structure and transmission properties of synthetic PrP aggregates. Our results highlight the influence of specific sequence features in the normally unstructured region of PrP that influence the infectious and neuropathogenic properties of PrP-derived aggregates.


Sign in / Sign up

Export Citation Format

Share Document