Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines
ABSTRACTCandida albicanshas developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions betweenCandida albicansandPseudomonas aeruginosathrough the action ofP. aeruginosa-produced phenazines. While phenazines are toxic toC. albicansat millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development ofC. albicanswrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impairedC. albicansgrowth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease.IMPORTANCEMany of the infections caused byCandida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study ofC. albicansinteractions with the bacteriumPseudomonas aeruginosa, which often coinfects withC. albicans, we have found thatP. aeruginosa-produced phenazines modulateC. albicansmetabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure ofC. albicansbiofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treatC. albicansinfections.