scholarly journals Bacterial-Chromatin Structural Proteins Regulate the Bimodal Expression of the Locus of Enterocyte Effacement (LEE) Pathogenicity Island in Enteropathogenic Escherichia coli

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Hervé Leh ◽  
Ahmad Khodr ◽  
Marie-Christine Bouger ◽  
Bianca Sclavi ◽  
Sylvie Rimsky ◽  
...  

ABSTRACT In enteropathogenic Escherichia coli (EPEC), the locus of enterocyte effacement (LEE) encodes a type 3 secretion system (T3SS) essential for pathogenesis. This pathogenicity island comprises five major operons (LEE1 to LEE5), with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1, encodes Ler (LEE-encoded regulator), an H-NS (nucleoid structuring protein) paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro. Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression. IMPORTANCE Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro, the binding of H-NS to the LEE5 promoter results in local structural modifications of DNA distinct from those generated through Ler binding. Furthermore, ler expression is a key parameter modulating the variability of the proportions of bacterial subpopulations. Accordingly, modulating the production of Ler into a nonpathogenic E. coli strain reproduces the bimodal expression of LEE5. Finally, this study illustrates how two nucleoid-binding proteins can reshape the epigenetic regulation of bacterial virulence. IMPORTANCE Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro, the binding of H-NS to the LEE5 promoter results in local structural modifications of DNA distinct from those generated through Ler binding. Furthermore, ler expression is a key parameter modulating the variability of the proportions of bacterial subpopulations. Accordingly, modulating the production of Ler into a nonpathogenic E. coli strain reproduces the bimodal expression of LEE5. Finally, this study illustrates how two nucleoid-binding proteins can reshape the epigenetic regulation of bacterial virulence.

2002 ◽  
Vol 184 (18) ◽  
pp. 5058-5066 ◽  
Author(s):  
Cristina Madrid ◽  
José M. Nieto ◽  
Sònia Paytubi ◽  
Maurizio Falconi ◽  
Claudio O. Gualerzi ◽  
...  

ABSTRACT Proteins H-NS and Hha form a nucleoprotein complex that modulates expression of the thermoregulated hly operon of Escherichia coli. We have been able to identify two H-NS binding sites in the hly regulatory region. One of them partially overlaps the promoter region (site II), and the other is located about 2 kbp upstream (site I). In contrast, Hha protein did not show any preference for specific sequences. In vitro, temperature influences the affinity of H-NS for a DNA fragment containing both binding sites and H-NS-mediated repression of hly operon transcription. Deletion analysis of the hly regulatory region confirms the relevance of site I for thermoregulation of this operon. We present a model to explain the temperature-modulated repression of the hly operon, based on the experiments reported here and other, preexisting data.


2000 ◽  
Vol 74 (5) ◽  
pp. 2084-2093 ◽  
Author(s):  
Joel Schaley ◽  
Robert J. O'Connor ◽  
Laura J. Taylor ◽  
Dafna Bar-Sagi ◽  
Patrick Hearing

ABSTRACT The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.


2018 ◽  
Author(s):  
Alina Munteanu ◽  
Neelanjan Mukherjee ◽  
Uwe Ohler

AbstractMotivationRNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized.ResultsWe developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3‘UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP.AvailabilitySSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/[email protected]


2007 ◽  
Vol 189 (14) ◽  
pp. 5060-5067 ◽  
Author(s):  
M. Carolina Pilonieta ◽  
Maria D. Bodero ◽  
George P. Munson

ABSTRACT H10407 is a strain of enterotoxigenic Escherichia coli (ETEC) that utilizes CFA/I pili to adhere to surfaces of the small intestine, where it elaborates toxins that cause profuse watery diarrhea in humans. Expression of the CFA/I pilus is positively regulated at the level of transcription by CfaD, a member of the AraC/XylS family. DNase I footprinting revealed that the activator has two binding sites upstream of the pilus promoter cfaAp. One site extends from positions −23 to −56, and the other extends from positions −73 to −103 (numbering relative to the transcription start site of cfaAp). Additional CfaD binding sites were predicted within the genome of H10407 by computational analysis. Two of these sites lie upstream of a previously uncharacterized gene, cexE. In vitro DNase I footprinting confirmed that both sites are genuine binding sites, and cexEp::lacZ reporters demonstrated that CfaD is required for the expression of cexE in vivo. The amino terminus of CexE contains a secretory signal peptide that is removed during translocation across the cytoplasmic membrane through the general secretory pathway. These studies suggest that CexE may be a novel ETEC virulence factor because its expression is controlled by the virulence regulator CfaD, and its distribution is restricted to ETEC.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2511-2520 ◽  
Author(s):  
S. Fujiwara ◽  
J.C. Corbo ◽  
M. Levine

Previous studies have identified a minimal 434 bp enhancer from the promoter region of the Ciona Brachyury gene (Ci-Bra), which is sufficient to direct a notochord-specific pattern of gene expression. Here we present evidence that a Ciona homolog of snail (Ci-sna) encodes a repressor of the Ci-Bra enhancer in the tail muscles. DNA-binding assays identified four Ci-Sna-binding sites in the Ci-Bra enhancer, and mutations in these sites cause otherwise normal Ci-Bra/lacZ transgenes to be misexpressed in ectopic tissues, particularly the tail muscles. Selective misexpression of Ci-sna using a heterologous promoter results in the repression of Ci-Bra/lacZ transgenes in the notochord. Moreover, the conversion of the Ci-Sna repressor into an activator results in the ectopic induction of Ci-Bra/lacZ transgenes in the muscles, and also causes an intermixing of notochord and muscle cells during tail morphogenesis. These results suggest that Ci-Sna functions as a boundary repressor, which subdivides the mesoderm into separate notochord and tail muscle lineages.


1992 ◽  
Vol 12 (10) ◽  
pp. 4251-4261 ◽  
Author(s):  
C Kingsley ◽  
A Winoto

Analysis of a T-cell antigen receptor (TCR) alpha promoter from a variable gene segment (V) revealed a critical GT box element which is also found in upstream regions of several V alpha genes, TCR enhancer, and regulatory elements of other genes. This element is necessary for TCR gene expression and binds several proteins. These GT box-binding proteins were identified as members of a novel Sp1 multigene family. Two of them, which we term Sp2 and Sp3, were cloned. Sp2 and Sp3 contain zinc fingers and transactivation domains similar to those of Sp1. Like Sp1, Sp2 and Sp3 are expressed ubiquitously, and their in vitro-translated products bind to the GT box in TCR V alpha promoters. Sp3, in particular, also binds to the Sp1 consensus sequence GC box and has binding activity similar to that of Sp1. As the GT box has also previously been shown to play a role in gene regulation of other genes, these newly isolated Sp2 and Sp3 proteins might regulate expression not only of the TCR gene but of other genes as well.


1992 ◽  
Vol 12 (10) ◽  
pp. 4251-4261 ◽  
Author(s):  
C Kingsley ◽  
A Winoto

Analysis of a T-cell antigen receptor (TCR) alpha promoter from a variable gene segment (V) revealed a critical GT box element which is also found in upstream regions of several V alpha genes, TCR enhancer, and regulatory elements of other genes. This element is necessary for TCR gene expression and binds several proteins. These GT box-binding proteins were identified as members of a novel Sp1 multigene family. Two of them, which we term Sp2 and Sp3, were cloned. Sp2 and Sp3 contain zinc fingers and transactivation domains similar to those of Sp1. Like Sp1, Sp2 and Sp3 are expressed ubiquitously, and their in vitro-translated products bind to the GT box in TCR V alpha promoters. Sp3, in particular, also binds to the Sp1 consensus sequence GC box and has binding activity similar to that of Sp1. As the GT box has also previously been shown to play a role in gene regulation of other genes, these newly isolated Sp2 and Sp3 proteins might regulate expression not only of the TCR gene but of other genes as well.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 446 ◽  
Author(s):  
Shijie Xin ◽  
Xiaohui Wang ◽  
Guojun Dai ◽  
Jingjing Zhang ◽  
Tingting An ◽  
...  

The proinflammatory cytokine, interleukin-6 (IL-6), plays a critical role in many chronic inflammatory diseases, particularly inflammatory bowel disease. To investigate the regulation of IL-6 gene expression at the molecular level, genomic DNA sequencing of Jinghai yellow chickens (Gallus gallus) was performed to detect single-nucleotide polymorphisms (SNPs) in the region −2200 base pairs (bp) upstream to 500 bp downstream of IL-6. Transcription factor binding sites and CpG islands in the IL-6 promoter region were predicted using bioinformatics software. Twenty-eight SNP sites were identified in IL-6. Four of these 28 SNPs, three [−357 (G > A), −447 (C > G), and −663 (A > G)] in the 5′ regulatory region and one in the 3′ non-coding region [3177 (C > T)] are not labelled in GenBank. Bioinformatics analysis revealed 11 SNPs within the promoter region that altered putative transcription factor binding sites. Furthermore, the C-939G mutation in the promoter region may change the number of CpG islands, and SNPs in the 5′ regulatory region may influence IL-6 gene expression by altering transcription factor binding or CpG methylation status. Genetic diversity analysis revealed that the newly discovered A-663G site significantly deviated from Hardy-Weinberg equilibrium. These results provide a basis for further exploration of the promoter function of the IL-6 gene and the relationships of these SNPs to intestinal inflammation resistance in chickens.


Author(s):  
Bożena Bruhn-Olszewska ◽  
Vadim Molodtsov ◽  
Michał Sobala ◽  
Maciej Dylewski ◽  
Katsuhiko S. Murakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document