scholarly journals Phenotypic Profiling Reveals thatCandida albicansOpaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells

mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Iuliana V. Ene ◽  
Matthew B. Lohse ◽  
Adrian V. Vladu ◽  
Joachim Morschhäuser ◽  
Alexander D. Johnson ◽  
...  

ABSTRACTThe white-opaque switch is a bistable, epigenetic transition affecting multiple traits inCandida albicansincluding mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state ofC. albicansin the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition bothin vitroand in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state.IMPORTANCEEpigenetic transitions are an important mechanism by which microbes adapt to external stimuli. ForCandida albicans, such transitions are crucial for adaptation to complex, fluctuating environments, and therefore contribute to its success as a human pathogen. The white-opaque switch modulates multipleC. albicansattributes, from sexual competency to niche specificity. Here, we demonstrate that metabolic circuits are extensively rewired between white and opaque states, so that the two cell types exhibit optimal fitness under different nutritional conditions and at different temperatures. We thereby establish that epigenetic events can profoundly alter the metabolism of fungal cells. We also demonstrate that epigenetic switching regulates filamentation and biofilm formation, two phenotypes closely associated with pathogenesis. These experiments reveal that white cells, considered the most clinically relevant form ofC. albicans, are a “general-purpose” state suited to many environments, whereas opaque cells appear to represent a more metabolically specialized form of the species.

1998 ◽  
Vol 42 (10) ◽  
pp. 2503-2510 ◽  
Author(s):  
Maurizio Del Poeta ◽  
Wiley A. Schell ◽  
Christine C. Dykstra ◽  
Susan K. Jones ◽  
Richard R. Tidwell ◽  
...  

ABSTRACT Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities againstCandida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active againstAspergillus fumigatus, Fusarium solani,Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents.


2019 ◽  
Author(s):  
Anfal Osama Mohamed Sati ◽  
Abdelrahman Hamza Abdelmoneim Hamza ◽  
Enas Dawoud Khairi Dawoud ◽  
Tebyan Ameer Abdelhameed Abbas ◽  
Fatima Abdelrahman Bshier Abdelrahman ◽  
...  

AbstractThe fungus Candida albicans is an opportunistic pathogen that causes a wide range of infections. It’s the primary cause of candidiasis and the fourth most common cause of nosocomial infection. In addition, disseminated invasive candidiasis which is a major complication of the disease has an estimated mortality rate of 40%-60% even with the use of antifungal drugs. Over the last decades, several different anti-Candida vaccines have been suggested with different strategies for immunization against candidiasis such as, live-attenuated fungi, recombinant proteins, and glycoconjugates but none has been approved by the FDA, yet. This study aims to introduce a new possible vaccine for C. albicans through analyzing peptides of its pyruvate kinase (PK) protein as an immunogenic stimulant computationally.A total number of 28 C. albicans, pyruvate kinase proteins were obtained from NCBI on the 9th of February 2019 and were subjected to multiple sequence alignment using Bioedit for conservancy. The main analytical tool was IEDB, Chimera for homology modelling, and MOE for docking.Among the tested peptides, fifteen promising T-cell peptides were predicted. Five peptides were more important than the others (HMIFASFIR, YRGVYPFIY, AVAAVSAAY, LRWAVSEAV, and IFASFIRTA) They show high Binding Affinity to MHC molecules, low binding energy required indicating more stable bonds, and their ideal length of nine peptides. (PTRAEVSDV) peptide is the most promising linear B-cell peptide due to its physiochemical parameters and optimal length (nine amino acids). It’s highly recommended to have these five strong candidates in future in vivo and in vitro analysis studies.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 355
Author(s):  
Unai Caballero ◽  
Sarah Kim ◽  
Elena Eraso ◽  
Guillermo Quindós ◽  
Valvanera Vozmediano ◽  
...  

Candida auris is an emergent fungal pathogen that causes severe infectious outbreaks globally. The public health concern when dealing with this pathogen is mainly due to reduced susceptibility to current antifungal drugs. A valuable alternative to overcome this problem is to investigate the efficacy of combination therapy. The aim of this study was to determine the in vitro interactions of isavuconazole with echinocandins against C. auris. Interactions were determined using a checkerboard method, and absorbance data were analyzed with different approaches: the fractional inhibitory concentration index (FICI), Greco universal response surface approach, and Bliss interaction model. All models were in accordance and showed that combinations of isavuconazole with echinocandins resulted in an overall synergistic interaction. A wide range of concentrations within the therapeutic range were selected to perform time-kill curves. These confirmed that isavuconazole–echinocandin combinations were more effective than monotherapy regimens. Synergism and fungistatic activity were achieved with combinations that included isavuconazole in low concentrations (≥0.125 mg/L) and ≥1 mg/L of echinocandin. Time-kill curves revealed that once synergy was achieved, combinations of higher drug concentrations did not improve the antifungal activity. This work launches promising results regarding the combination of isavuconazole with echinocandins for the treatment of C. auris infections.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 489 ◽  
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Cristian Parra-Sepúlveda ◽  
Samuel Vega ◽  
Humberto Bernasconi ◽  
Víctor L. Campos ◽  
...  

Yeasts can adapt to a wide range of pH fluctuations (2 to 10), while Helicobacter pylori, a facultative intracellular bacterium, can adapt to a range from pH 6 to 8. This work analyzed if H. pylori J99 can protect itself from acidic pH by entering into Candida albicans ATCC 90028. Growth curves were determined for H. pylori and C. albicans at pH 3, 4, and 7. Both microorganisms were co-incubated at the same pH values, and the presence of intra-yeast bacteria was evaluated. Intra-yeast bacteria-like bodies were detected using wet mounting, and intra-yeast binding of anti-H. pylori antibodies was detected using immunofluorescence. The presence of the H. pylori rDNA 16S gene in total DNA from yeasts was demonstrated after PCR amplification. H. pylori showed larger death percentages at pH 3 and 4 than at pH 7. On the contrary, the viability of the yeast was not affected by any of the pHs evaluated. H. pylori entered into C. albicans at all the pH values assayed but to a greater extent at unfavorable pH values (pH 3 or 4, p = 0.014 and p = 0.001, respectively). In conclusion, it is possible to suggest that H. pylori can shelter itself within C. albicans under unfavorable pH conditions.


1984 ◽  
Vol 30 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Marcia Manning ◽  
Christina B. Snoddy ◽  
Robert. A. Fromtling

An induced mutant of Candida albicans with greatly decreased virulence for mice is described. The mutant was one of five auxotrophic mutants obtained by ultraviolet irradiation of a clinical isolate (strain MY 1044). The five mutants included two methionine auxotrophs, one methionine–cysteine auxotroph, one temperature-sensitive serine auxotroph, and one auxotroph with unknown growth requirements. Each of the mutants produced normal mycelium and had a normal profile of susceptibility to four antifungal drugs. The virulence of each mutant was compared with the parent strain by LD50 determination in mice. Four of the five auxotrophs exhibited LD50's that were not significantly different from the parent strain (mean LD50 = 7.5 × 105 cells). However, the temperature-sensitive serine auxotroph was significantly less virulent than the parent strain (LD50 > 107 cells), even though it grew well in vivo and in mouse serum at 37 °C in vitro. Use of this mutant in conjunction with its "isogenic" parent should help to elucidate true virulence factors in C. albicans.


2003 ◽  
Vol 52 (3) ◽  
pp. 247-249 ◽  
Author(s):  
Martin Schaller ◽  
Nikola Krnjaic ◽  
Markus Niewerth ◽  
Gerald Hamm ◽  
Bernhard Hube ◽  
...  

The inhibitory effect of human immunodeficiency virus (HIV) proteinase inhibitors amprenavir and saquinavir and antifungal agents terbinafine, ketoconazole, amphotericin B and ciclopiroxolamine on aspartyl proteinases (Saps) secreted by Candida albicans was tested in an in vitro spectophotometric assay. As expected, both HIV proteinase inhibitors showed a significant inhibitory effect on Sap activity, which was comparable to that of the classical aspartyl proteinase inhibitor pepstatin A (P < 0.001). Antifungal drugs such as ketoconazole, terbinafine and amphotericin B had no, or only minor, inhibitory effects on proteolytic activity. In contrast, a significant reduction in Sap activity could be demonstrated during treatment with the antifungal agent ciclopiroxolamine (P < 0.001). These results point to a multiple effect of this antimycotic agent and might explain the reduced adherence of C. albicans to human epithelial cells at subinhibitory doses.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Yuan Sun ◽  
Christine Gadoury ◽  
Matthew P. Hirakawa ◽  
Richard J. Bennett ◽  
Doreen Harcus ◽  
...  

ABSTRACTIt has been proposed that the ancestral fungus was mating competent and homothallic. However, many mating-competent fungi were initially classified as asexual because their mating capacity was hidden behind layers of regulation. For efficientin vitromating, the essentially obligate diploid ascomycete pathogenCandida albicanshas to change its mating type locus from heterozygousMTLa/α to homozygousMTLa/aorMTLα/α and then undergo an environmentally controlled epigenetic switch to the mating-competent opaque form. These requirements greatly reduce the potential forC. albicansmating. Deletion of the Yci1 domain geneOFR1bypasses the need forC. albicanscells to change the mating type locus from heterozygous to homozygous prior to switching to the opaque form and mating and allows homothallic mating ofMTLheterozygous strains. This bypass is carbon source dependent and does not occur when cells are grown on glucose. Transcriptional profiling ofofr1mutant cells shows that in addition to regulating cell type and mating circuitry, Ofr1 is needed for proper regulation of histone and chitin biosynthesis gene expression. It appears thatOFR1is a key regulator inC. albicansand functions in part to maintain the cryptic mating phenotype of the pathogen.IMPORTANCECandida albicansis a human fungal pathogen with a recently discovered, highly cryptic mating ability. For efficient mating, it has to lose heterozygosity at its mating type locus. Then,MTLhomozygous strains can undergo an epigenetic switch to an elongated yeast state, termed the opaque form, and become mating competent. This infrequent two-step process greatly reduces the potential for mating; few strains areMTLhomozygous, and the opaque state is unstable at the temperature of the mammalian host.C. albicanshas a complex mechanism for mating that appears designed to ensure that mating is infrequent. Here, we have characterized a new gene, opaque-formation regulator 1 (OFR1). Deleting theOFR1gene allowsMTLa/α strains to mate efficiently with either mating type or even mate homothallically. It is possible that downregulatingOFR1in the host environment could allow mating inC. albicansby a route that does not involveMTLhomozygosis.


2009 ◽  
Vol 77 (9) ◽  
pp. 4150-4160 ◽  
Author(s):  
Lois M. Douglas ◽  
Stephen W. Martin ◽  
James B. Konopka

ABSTRACT The Candida albicans plasma membrane plays critical roles in growth and virulence and as a target for antifungal drugs. Three C. albicans genes that encode Bin-Amphiphysin-Rvs homology domain proteins were mutated to define their roles in plasma membrane function. The deletion of RVS161 and RVS167, but not RVS162, caused strong defects. The rvs161Δ mutant was more defective in endocytosis and morphogenesis than rvs167Δ, but both were strongly defective in polarizing actin patches. Other plasma membrane constituents were still properly localized, including a filipin-stained domain at the hyphal tips. An analysis of growth under different in vitro conditions showed that the rvs161Δ and rvs167Δ mutants grew less invasively in agar and also suggested that they have defects in cell wall synthesis and Rim101 pathway signaling. These mutants were also more resistant to the antimicrobial peptide histatin 5 but showed essentially normal responses to the drugs caspofungin and amphotericin. Surprisingly, the rvs161Δ mutant was more sensitive to fluconazole, whereas the rvs167Δ mutant was more resistant, indicating that these mutations cause overlapping but distinct effects on cells. The rvs161Δ and rvs167Δ mutants both showed greatly reduced virulence in mice. However, the mutants were capable of growing to high levels in kidneys. Histological analyses of infected kidneys revealed that these rvsΔ mutants grew in a large fungal mass that was walled off by leukocytes, rather than forming disseminated microabscesses as seen for the wild type. The diminished virulence is likely due to a combination of the morphogenesis defects that reduce invasive growth and altered cell wall construction that exposes proinflammatory components to the host immune system.


Author(s):  
Rodrigo Rollin-Pinheiro ◽  
Yuri de Castro Almeida ◽  
Victor Pereira Rochetti ◽  
Mariana Ingrid Dutra da Silva Xisto ◽  
Luana Pereira Borba-Santos ◽  
...  

Scedosporium and Lomentospora species are filamentous fungi responsible for a wide range of infections in humans and are frequently associated with cystic fibrosis and immunocompromising conditions. Because they are usually resistant to many antifungal drugs available in clinical settings, studies of alternative targets in fungal cells and therapeutic approaches are necessary. In the present work, we evaluated the in vitro antifungal activity of miltefosine against Scedosporium and Lomentospora species and how this phospholipid analogue affects the fungal cell. Miltefosine inhibited different Scedosporium and Lomentospora species at 2–4 µg/ml and reduced biofilm formation. The loss of membrane integrity in Scedosporium aurantiacum caused by miltefosine was demonstrated by leakage of intracellular components and lipid raft disorganisation. The exogenous addition of glucosylceramide decreased the inhibitory activity of miltefosine. Reactive oxygen species production and mitochondrial activity were also affected by miltefosine, as well as the susceptibility to fluconazole, caspofungin and myoricin. The data obtained in the present study contribute to clarify the dynamics of the interaction between miltefosine and Scedosporium and Lomentospora cells, highlighting its potential use as new antifungal drug in the future.


Author(s):  
Abhishek Kumar Verma ◽  
Aarfah Majid ◽  
Md. Shahadat Hossain ◽  
Sk. Faisal Ahmed ◽  
Mohammad Ashid ◽  
...  

This research aims to find out whether the synthetic 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with Candida albicans. Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a We are interested in using molecular docking and molecular dynamics modelling to investigate the interaction between the derivatives of 1, 2, 4-triazine and the resulting lanosterol 14 - demethylase (CYP51) of Candida albicans The inhibition of Candida albicans CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools were used to identifying the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future in vitro testing.


Sign in / Sign up

Export Citation Format

Share Document