scholarly journals Identification of 1, 2, 4-triazine and its derivatives against Lanosterol 14 - demethylase (CYP51) property of Candida albicans: Influence on the development of new antifungal therapeutic strategies

Author(s):  
Abhishek Kumar Verma ◽  
Aarfah Majid ◽  
Md. Shahadat Hossain ◽  
Sk. Faisal Ahmed ◽  
Mohammad Ashid ◽  
...  

This research aims to find out whether the synthetic 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with Candida albicans. Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a We are interested in using molecular docking and molecular dynamics modelling to investigate the interaction between the derivatives of 1, 2, 4-triazine and the resulting lanosterol 14 - demethylase (CYP51) of Candida albicans The inhibition of Candida albicans CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools were used to identifying the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future in vitro testing.

Author(s):  
Abhishek Kumar Verma ◽  
Aarfah Majid ◽  
Md. Shahadat Hossain ◽  
Sk. Faisal Ahmed ◽  
Mohammad Ashid ◽  
...  

This research aims to find out whether the synthetic 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with Candida albicans. Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a We are interested in using molecular docking and molecular dynamics modelling to investigate the interaction between the derivatives of 1, 2, 4-triazine and the resulting lanosterol 14 - demethylase (CYP51) of Candida albicans The inhibition of Candida albicans CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools were used to identifying the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future in vitro testing.


2020 ◽  
Vol 20 (1) ◽  
pp. 127-138
Author(s):  
Safia Gacemi ◽  
Khedidja Benarous ◽  
Santiago Imperial ◽  
Mohamed Yousfi

Background and Objective: The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. Methods: In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). Results: The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. Conclusion: Through this work, we propose Lepidine B & E as potent antifungal drugs.


2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2021 ◽  
Vol 01 ◽  
Author(s):  
Sharuk L. Khan ◽  
Falak A. Siddiqui ◽  
Mohd Sayeed Shaikh ◽  
Nitin V. Nema ◽  
Aijaz A. Shaikh

Background: COVID-19 (SARS-CoV-2 infection) has affected almost every region of the world. Presently, there is no defined line of treatment available for it. Triphala is already proven to have a safe biological window and well known for its antioxidant and immunomodulatory properties. Objective: Present work has been carried out to study Triphala's effectiveness for the treatment of COVID-19. Methods: The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein responsible for the invasion into the host cell, which leads to further infection. The molecular docking (MD) was performed to explore the binding affinities (kcal/mol) of Triphala's chemical constituents and compared them with the existing drugs under investigation for the treatment of COVID-19 epidemiology. Results: Chebulinic acid binding affinity -8.5 kcal/mol with the formation of 10 hydrogen bonds. Almost all the major chemical constituents have formed two or more hydrogen bonds with RBD of SARS-CoV-2 Spike Glycoprotein. Conclusion: The present study showed that Triphala might perform vital roles in the treatment of COVID-19 and expand its usefulness to physicians to treat this illness. There is a need to complete the in-vitro, in-vivo biological testing of Triphala on SARS-CoV-2 disease to create more quality data. The binding mode of Chebulinic acid in the allosteric cavity allows a better understanding of RBD of SARS-CoV-2 Spike Glycoprotein target and provides insight for the design of new inhibitors. Triphala is already proven to have a safe biological window, which indicates we can skip the pre-clinical trials. Apart from this, Triphala is well known for its antioxidant properties, which ultimately improves the immunity of the COVID-19 patient.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1148
Author(s):  
Krzysztof Marciniec ◽  
Elwira Chrobak ◽  
Aleksandra Dąbrowska ◽  
Ewa Bębenek ◽  
Monika Kadela-Tomanek ◽  
...  

Lupane-type pentacyclic triterpenes such as betulin and betulinic acid play an important role in the search for new therapies that would be effective in controlling viral infections. The aim of this study was the synthesis and evaluation of in vitro anti-HIV-1 activity for phosphate derivatives of 3-carboxyacylbetulin 3–5 as well as an in silico study of new compounds as potential ligands of the C-terminal domain of the HIV-1 capsid–spacer peptide 1 (CA-CTD-SP1) as a molecular target of HIV-1 maturation inhibitors. In vitro studies showed that 28-diethoxyphosphoryl-3-O-(3′,3′-dimethylsuccinyl)betulin (compound 3), the phosphate analog of bevirimat (betulinic acid derivative, HIV-1 maturation inhibitor), has IC50 (half maximal inhibitory concentration) equal to 0.02 μM. Compound 3 inhibits viral replication at a level comparable to bevirimat and is also more selective (selectivity indices = 1250 and 967, respectively). Molecular docking was used to examine the probable interaction between the phosphate derivatives of 3-carboxyacylbetulin and C-terminal domain (CTD) of the HIV-1 capsid (CA)–spacer peptide 1 (SP1) fragment of Gag protein, designated as CTD-SP1. Compared with interactions between bevirimat (BVM) and the protein, an increased number of strong interactions between ligand 3 and the protein, generated by the phosphate group, were observed. These compounds might have the potential to also inhibit SARS-CoV2 proteins, in as far as the intrinsically imprecise docking scores suggest.


1998 ◽  
Vol 42 (10) ◽  
pp. 2503-2510 ◽  
Author(s):  
Maurizio Del Poeta ◽  
Wiley A. Schell ◽  
Christine C. Dykstra ◽  
Susan K. Jones ◽  
Richard R. Tidwell ◽  
...  

ABSTRACT Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities againstCandida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active againstAspergillus fumigatus, Fusarium solani,Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents.


1984 ◽  
Vol 30 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Marcia Manning ◽  
Christina B. Snoddy ◽  
Robert. A. Fromtling

An induced mutant of Candida albicans with greatly decreased virulence for mice is described. The mutant was one of five auxotrophic mutants obtained by ultraviolet irradiation of a clinical isolate (strain MY 1044). The five mutants included two methionine auxotrophs, one methionine–cysteine auxotroph, one temperature-sensitive serine auxotroph, and one auxotroph with unknown growth requirements. Each of the mutants produced normal mycelium and had a normal profile of susceptibility to four antifungal drugs. The virulence of each mutant was compared with the parent strain by LD50 determination in mice. Four of the five auxotrophs exhibited LD50's that were not significantly different from the parent strain (mean LD50 = 7.5 × 105 cells). However, the temperature-sensitive serine auxotroph was significantly less virulent than the parent strain (LD50 > 107 cells), even though it grew well in vivo and in mouse serum at 37 °C in vitro. Use of this mutant in conjunction with its "isogenic" parent should help to elucidate true virulence factors in C. albicans.


2003 ◽  
Vol 52 (3) ◽  
pp. 247-249 ◽  
Author(s):  
Martin Schaller ◽  
Nikola Krnjaic ◽  
Markus Niewerth ◽  
Gerald Hamm ◽  
Bernhard Hube ◽  
...  

The inhibitory effect of human immunodeficiency virus (HIV) proteinase inhibitors amprenavir and saquinavir and antifungal agents terbinafine, ketoconazole, amphotericin B and ciclopiroxolamine on aspartyl proteinases (Saps) secreted by Candida albicans was tested in an in vitro spectophotometric assay. As expected, both HIV proteinase inhibitors showed a significant inhibitory effect on Sap activity, which was comparable to that of the classical aspartyl proteinase inhibitor pepstatin A (P < 0.001). Antifungal drugs such as ketoconazole, terbinafine and amphotericin B had no, or only minor, inhibitory effects on proteolytic activity. In contrast, a significant reduction in Sap activity could be demonstrated during treatment with the antifungal agent ciclopiroxolamine (P < 0.001). These results point to a multiple effect of this antimycotic agent and might explain the reduced adherence of C. albicans to human epithelial cells at subinhibitory doses.


2009 ◽  
Vol 77 (9) ◽  
pp. 4150-4160 ◽  
Author(s):  
Lois M. Douglas ◽  
Stephen W. Martin ◽  
James B. Konopka

ABSTRACT The Candida albicans plasma membrane plays critical roles in growth and virulence and as a target for antifungal drugs. Three C. albicans genes that encode Bin-Amphiphysin-Rvs homology domain proteins were mutated to define their roles in plasma membrane function. The deletion of RVS161 and RVS167, but not RVS162, caused strong defects. The rvs161Δ mutant was more defective in endocytosis and morphogenesis than rvs167Δ, but both were strongly defective in polarizing actin patches. Other plasma membrane constituents were still properly localized, including a filipin-stained domain at the hyphal tips. An analysis of growth under different in vitro conditions showed that the rvs161Δ and rvs167Δ mutants grew less invasively in agar and also suggested that they have defects in cell wall synthesis and Rim101 pathway signaling. These mutants were also more resistant to the antimicrobial peptide histatin 5 but showed essentially normal responses to the drugs caspofungin and amphotericin. Surprisingly, the rvs161Δ mutant was more sensitive to fluconazole, whereas the rvs167Δ mutant was more resistant, indicating that these mutations cause overlapping but distinct effects on cells. The rvs161Δ and rvs167Δ mutants both showed greatly reduced virulence in mice. However, the mutants were capable of growing to high levels in kidneys. Histological analyses of infected kidneys revealed that these rvsΔ mutants grew in a large fungal mass that was walled off by leukocytes, rather than forming disseminated microabscesses as seen for the wild type. The diminished virulence is likely due to a combination of the morphogenesis defects that reduce invasive growth and altered cell wall construction that exposes proinflammatory components to the host immune system.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6980
Author(s):  
Pranab K. Bhadra ◽  
Rachael N. Magwaza ◽  
Niroshini Nirmalan ◽  
Sally Freeman ◽  
Jill Barber ◽  
...  

Erythromycin A is an established anti-bacterial agent against Gram-positive bacteria, but it is unstable to acid. This led to an evaluation of erythromycin B and its derivatives because these have improved acid stability. These compounds were investigated for their anti-malarial activities, by their in silico molecular docking into segments of the exit tunnel of the apicoplast ribosome from Plasmodium falciparum. This is believed to be the target of the erythromycin A derivative, azithromycin, which has mild anti-malarial activity. The erythromycin B derivatives were evaluated on the multi-drug (chloroquine, pyrimethamine, and sulfadoxine)-resistant strain K1 of P. falciparum for asexual growth inhibition on asynchronous culture. The erythromycin B derivatives were identified as active in vitro inhibitors of asexual growth of P. falciparum with low micro-molar IC50 values after a 72 h cycle. 5-Desosaminyl erythronolide B ethyl succinate showed low IC50 of 68.6 µM, d-erythromycin B 86.8 µM, and erythromycin B 9-oxime 146.0 µM on the multi-drug-resistant K1 of P. falciparum. Based on the molecular docking, it seems that a small number of favourable interactions or the presence of unfavourable interactions of investigated derivatives of erythromycin B with in silico constructed segment from the exit tunnel from the apicoplast of P. falciparum is the reason for their weak in vitro anti-malarial activities.


Sign in / Sign up

Export Citation Format

Share Document