scholarly journals Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Benjamin A. Krishna ◽  
Emma L. Poole ◽  
Sarah E. Jackson ◽  
Martine J. Smit ◽  
Mark R. Wills ◽  
...  

ABSTRACT Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. IMPORTANCE Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection—it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants. IMPORTANCE Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection—it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants.

2000 ◽  
Vol 74 (19) ◽  
pp. 9333-9337 ◽  
Author(s):  
Kirsten Lofgren White ◽  
Barry Slobedman ◽  
Edward S. Mocarski

ABSTRACT Human cytomegalovirus latency in bone marrow-derived myeloid progenitors is characterized by the presence of latency-associated transcripts encoded in the ie1/ie2 region of the viral genome. To assess the role of ORF94 (UL126a), a conserved open reading frame on these transcripts, a recombinant virus (RC2710) unable to express this gene was constructed. This virus replicated at wild-type levels and expressed productive as well as latency-associatedie1/ie2 region transcripts. During latency in granulocyte-macrophage progenitors, RC2710 DNA was detected at levels indistinguishable from wild-type virus, latent-phase transcription was present, and RC2710 reactivated when latently infected cells were cocultured with permissive fibroblasts. These data suggest pORF94 is not required for either productive or latent infection as assayed in cultured cells despite being the only known nuclear latency-associated protein.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Betty Lau ◽  
Emma Poole ◽  
Benjamin Krishna ◽  
Immaculada Montanuy ◽  
Mark R. Wills ◽  
...  

Abstract The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4128-4137 ◽  
Author(s):  
Allen K. L. Cheung ◽  
David J. Gottlieb ◽  
Bodo Plachter ◽  
Sandra Pepperl-Klindworth ◽  
Selmir Avdic ◽  
...  

AbstractThe capacity of human cytomegalovirus (HCMV) to establish and maintain a latent infection from which it can later reactivate ensures its widespread distribution in the population, but the mechanisms enabling maintenance of latency in the face of a robust immune system are poorly understood. We examined the role of the HCMV UL111A gene, which encodes homologs of the immunosuppressive cytokine interleukin-10 in the context of latent infection of myeloid progenitor cells. A UL111A deletion virus was able to establish, maintain, and reactivate from experimental latency in a manner comparable with parental virus, but major histocompatibility complex class II levels increased significantly on the surfaces of cells infected with the deletion virus. Importantly, there was an increase in both allogeneic and autologous peripheral blood mononuclear cells and CD4+ T-cell responses to UL111A deletion virus-infected myeloid progenitors, indicating that loss of the capacity to express viral interleukin-10 during latency results in latently infected cells becoming more readily recognizable by a critical arm of the immune response. The detection of a viral gene that suppresses CD4+ T-cell recognition of latently infected cells identifies an immune evasion strategy that probably enhances the capacity of HCMV to persist in a latent state within the human host.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timo W. M. De Groof ◽  
Elizabeth G. Elder ◽  
Eleanor Y. Lim ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

AbstractLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients.


2021 ◽  
Vol 22 (21) ◽  
pp. 11994
Author(s):  
Chen Gam ze Letova ◽  
Inna Kalt ◽  
Meir Shamay ◽  
Ronit Sarid

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency.


2008 ◽  
Vol 89 (11) ◽  
pp. 2651-2661 ◽  
Author(s):  
Hua Wang ◽  
Carol D. Blair ◽  
Ken E. Olson ◽  
Rollie J. Clem

Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 127
Author(s):  
Benjamin A. Krishna ◽  
Amanda B. Wass ◽  
Christine M. O’Connor

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that latently infects hematopoietic progenitor cells (HPCs). Individuals with a competent immune system are, for the most part, asymptomatic for the disease. However when a latently infected individual becomes immunosuppressed, HCMV can reactivate, causing severe morbidity and mortality. While much of the viral genome is transcriptionally silenced during latency, some genes are expressed, including the HCMV-encoded G-protein coupled receptor US28. We showed that US28 expression is required for latency, as it suppressed the activator protein-1 (AP-1) transcription factor by attenuating the AP-1 subunit, fos. In turn, this prevents AP-1 from binding and activating the major immediate early promoter (MIEP), the key promoter regulating the latent-to-lytic transcriptional “switch”. Our new data suggest that US28-mediated signaling during latency attenuates the Src-MAPK signaling axis to regulate AP-1. We find that US28 expression suppresses Src, MEK, and ERK, as well as fos phosphorylation and AP-1 binding to the MIEP. Conversely, the pharmacological inhibition of Src, MEK, or ERK in US28Δ-latently infected HPCs suppresses infectious virus production, demonstrating the important role for this signaling axis during latency. Our recent data also reveal that regulating AP-1 is a key determinant in balancing HCMV latency and reactivation. Infection with a virus in which we disrupted the proximal AP-1 binding site in the MIEP (AP-1Δp) leads to reduced AP-1 binding and inefficient viral reactivation compared to wild type. Furthermore, AP-1 is critical for the de-repression of MIEP-driven transcripts and downstream early and late genes, while other immediate early genes remain unaffected. Collectively, these data suggest that AP-1 binding to the MIEP is suppressed during latency, but is required for the efficient transactivation of the MIEP during reactivation. We are currently elucidating US28’s involvement in recruiting AP-1 to the MIEP during reactivation.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 937-945 ◽  
Author(s):  
Felicia Goodrum ◽  
Matthew Reeves ◽  
John Sinclair ◽  
Kevin High ◽  
Thomas Shenk

AbstractLatency enables human cytomegalovirus (HCMV) to persist in the hematopoietic cells of infected individuals indefinitely and prevents clearance of the pathogen. Despite its critical importance to the viral infectious cycle, viral mechanisms that contribute to latency have not been identified. We compared the ability of low-passage clinical and laboratory-adapted strains of HCMV to establish a latent infection in primary human CD34+ cells. The low-passage strains, Toledo and FIX, established an infection with the hallmarks of latency, whereas the laboratory strains, AD169 and Towne, replicated producing progeny virus. We hypothesized that ULb′ region of the genome, which is unique to low-passage strains, may encode a latency-promoting activity. We created and analyzed recombinant viruses lacking segments or individual open reading frames (ORFs) in the ULb′ region. One 5-kb segment, and more specifically the UL138 ORF, was required for HCMV to establish and/or maintain a latent infection in hematopoietic progenitor cells infected in vitro. This is the first functional demonstration of a virus-coded sequence required for HCMV latency. Importantly, UL138 RNA was expressed in CD34+ cells and monocytes from HCMV-seropositive, healthy individuals. UL138 might be a target for antivirals against latent virus.


2002 ◽  
Vol 76 (17) ◽  
pp. 8963-8965 ◽  
Author(s):  
Viktor Müller ◽  
Javier Flavio Vigueras-Gómez ◽  
Sebastian Bonhoeffer

ABSTRACT Antiviral therapy induces a rapid drop in human immunodeficiency virus type 1 viremia, but the decline of virus levels decelerates over time. Mathematical modeling demonstrates that the source of residual virus production might be a single compartment of latently infected cells with an extended distribution of activation rates.


Sign in / Sign up

Export Citation Format

Share Document