scholarly journals Unstable Mechanisms of Resistance to Inhibitors of Escherichia coli Lipoprotein Signal Peptidase

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Homer Pantua ◽  
Elizabeth Skippington ◽  
Marie-Gabrielle Braun ◽  
Cameron L. Noland ◽  
Jingyu Diao ◽  
...  

ABSTRACT Clinical development of antibiotics with novel mechanisms of action to kill pathogenic bacteria is challenging, in part, due to the inevitable emergence of resistance. A phenomenon of potential clinical importance that is broadly overlooked in preclinical development is heteroresistance, an often-unstable phenotype in which subpopulations of bacterial cells show decreased antibiotic susceptibility relative to the dominant population. Here, we describe a new globomycin analog, G0790, with potent activity against the Escherichia coli type II signal peptidase LspA and uncover two novel resistance mechanisms to G0790 in the clinical uropathogenic E. coli strain CFT073. Building on the previous finding that complete deletion of Lpp, the major Gram-negative outer membrane lipoprotein, leads to globomycin resistance, we also find that an unexpectedly modest decrease in Lpp levels mediated by insertion-based disruption of regulatory elements is sufficient to confer G0790 resistance and increase sensitivity to serum killing. In addition, we describe a heteroresistance phenotype mediated by genomic amplifications of lspA that result in increased LspA levels sufficient to overcome inhibition by G0790 in culture. These genomic amplifications are highly unstable and are lost after as few as two subcultures in the absence of G0790, which places amplification-containing resistant strains at high risk of being misclassified as susceptible by routine antimicrobial susceptibility testing. In summary, our study uncovers two vastly different mechanisms of resistance to LspA inhibitors in E. coli and emphasizes the importance of considering the potential impact of unstable and heterogenous phenotypes when developing antibiotics for clinical use. IMPORTANCE Despite increasing evidence suggesting that antibiotic heteroresistance can lead to treatment failure, the significance of this phenomena in the clinic is not well understood, because many clinical antibiotic susceptibility testing approaches lack the resolution needed to reliably classify heteroresistant strains. Here we present G0790, a new globomycin analog and potent inhibitor of the Escherichia coli type II signal peptidase LspA. We demonstrate that in addition to previously known mechanisms of resistance to LspA inhibitors, unstable genomic amplifications containing lspA can lead to modest yet biologically significant increases in LspA protein levels that confer a heteroresistance phenotype.

2010 ◽  
Vol 59 (3) ◽  
pp. 207-212 ◽  
Author(s):  
M.I. ABOU-DOBARA ◽  
M.A. DEYAB ◽  
E.M. ELSAWY ◽  
H.H. MOHAMED

Thirty nine isolates of Escherichia coli, twenty two isolates of Klebsiella pneumoniae and sixteen isolates of Pseudomonas aeruginosa isolated from urinary tract infected patients were analyzed by antimicrobial susceptibility typing and random amplified polymorphic DNA (RAPD)-PCR. Antibiotic susceptibility testing was carried out by microdilution and E Test methods. From the antibiotic susceptibility, ten patterns were recorded (four for E. coli, three for K. pneumoniae and three for P. aeruginosa respectively). Furthermore, genotyping showed seventeen RAPD patterns (seven for E. coli, five for K. pneumoniae and five for P. aeruginosa respectively). In this study, differentiation of strains of E. coli, K. pneumoniae and P. aeruginosa from nosocomial infection was possible with the use of RAPD.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
James P. R. Connolly ◽  
Natasha C. A. Turner ◽  
Jennifer C. Hallam ◽  
Patricia T. Rimbi ◽  
Tom Flett ◽  
...  

Appropriate interpretation of environmental signals facilitates niche specificity in pathogenic bacteria. However, the responses of niche-specific pathogens to common host signals are poorly understood. d-Serine (d-ser) is a toxic metabolite present in highly variable concentrations at different colonization sites within the human host that we previously found is capable of inducing changes in gene expression. In this study, we made the striking observation that the global transcriptional response of three Escherichia coli pathotypes – enterohaemorrhagic E. coli (EHEC), uropathogenic E. coli (UPEC) and neonatal meningitis-associated E. coli (NMEC) – to d-ser was highly distinct. In fact, we identified no single differentially expressed gene common to all three strains. We observed the induction of ribosome-associated genes in extraintestinal pathogens UPEC and NMEC only, and the induction of purine metabolism genes in gut-restricted EHEC, and UPEC indicating distinct transcriptional responses to a common signal. UPEC and NMEC encode dsdCXA – a genetic locus required for detoxification and hence normal growth in the presence of d-ser. Specific transcriptional responses were induced in strains accumulating d-ser (WT EHEC and UPEC/NMEC mutants lacking the d-ser-responsive transcriptional activator DsdC), corroborating the notion that d-ser is an unfavourable metabolite if not metabolized. Importantly, many of the UPEC-associated transcriptome alterations correlate with published data on the urinary transcriptome, supporting the hypothesis that d-ser sensing forms a key part of urinary niche adaptation in this pathotype. Collectively, our results demonstrate distinct pleiotropic responses to a common metabolite in diverse E. coli pathotypes, with important implications for niche selectivity.


2012 ◽  
Vol 56 (7) ◽  
pp. 3576-3581 ◽  
Author(s):  
Adriana Ortega ◽  
Jesús Oteo ◽  
Maitane Aranzamendi-Zaldumbide ◽  
Rosa M. Bartolomé ◽  
Germán Bou ◽  
...  

ABSTRACTWe conducted a prospective multicenter study in Spain to characterize the mechanisms of resistance to amoxicillin-clavulanate (AMC) inEscherichia coli. Up to 44 AMC-resistantE. coliisolates (MIC ≥ 32/16 μg/ml) were collected at each of the seven participant hospitals. Resistance mechanisms were characterized by PCR and sequencing. Molecular epidemiology was studied by pulsed-field gel electrophoresis (PFGE) and by multilocus sequence typing. Overall AMC resistance was 9.3%. The resistance mechanisms detected in the 257 AMC-resistant isolates were OXA-1 production (26.1%), hyperproduction of penicillinase (22.6%), production of plasmidic AmpC (19.5%), hyperproduction of chromosomic AmpC (18.3%), and production of inhibitor-resistant TEM (IRT) (17.5%). The IRTs identified were TEM-40 (33.3%), TEM-30 (28.9%), TEM-33 (11.1%), TEM-32 (4.4%), TEM-34 (4.4%), TEM-35 (2.2%), TEM-54 (2.2%), TEM-76 (2.2%), TEM-79 (2.2%), and the new TEM-185 (8.8%). By PFGE, a high degree of genetic diversity was observed although two well-defined clusters were detected in the OXA-1-producing isolates: the C1 cluster consisting of 19 phylogroup A/sequence type 88 [ST88] isolates and the C2 cluster consisting of 19 phylogroup B2/ST131 isolates (16 of them producing CTX-M-15). Each of the clusters was detected in six different hospitals. In total, 21.8% of the isolates were serotype O25b/phylogroup B2 (O25b/B2). AMC resistance inE. coliis widespread in Spain at the hospital and community levels. A high prevalence of OXA-1 was found. Although resistant isolates were genetically diverse, clonality was linked to OXA-1-producing isolates of the STs 88 and 131. Dissemination of IRTs was frequent, and the epidemic O25b/B2/ST131 clone carried many different mechanisms of AMC resistance.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Markus Peschke ◽  
Mélanie Le Goff ◽  
Gregory M. Koningstein ◽  
Norbert O. Vischer ◽  
Abbi Abdel-Rehim ◽  
...  

ABSTRACT Tail-anchored membrane proteins (TAMPs) are a distinct subset of inner membrane proteins (IMPs) characterized by a single C-terminal transmembrane domain (TMD) that is responsible for both targeting and anchoring. Little is known about the routing of TAMPs in bacteria. Here, we have investigated the role of TMD hydrophobicity in tail-anchor function in Escherichia coli and its influence on the choice of targeting/insertion pathway. We created a set of synthetic, fluorescent TAMPs that vary in the hydrophobicity of their TMDs and corresponding control polypeptides that are extended at their C terminus to create regular type II IMPs. Surprisingly, we observed that TAMPs have a much lower TMD hydrophobicity threshold for efficient targeting and membrane insertion than their type II counterparts. Using strains conditional for the expression of known membrane-targeting and insertion factors, we show that TAMPs with strongly hydrophobic TMDs require the signal recognition particle (SRP) for targeting. Neither the SecYEG translocon nor YidC appears to be essential for the membrane insertion of any of the TAMPs studied. In contrast, corresponding type II IMPs with a TMD of sufficient hydrophobicity to promote membrane insertion followed an SRP- and SecYEG translocon-dependent pathway. Together, these data indicate that the capacity of a TMD to promote the biogenesis of E. coli IMPs is strongly dependent upon the polypeptide context in which it is presented. IMPORTANCE A subset of membrane proteins is targeted to and inserted into the membrane via a hydrophobic transmembrane domain (TMD) that is positioned at the very C terminus of the protein. The biogenesis of these so-called tail-anchored proteins (TAMPs) has been studied in detail in eukaryotic cells. Various partly redundant pathways were identified, the choice for which depends in part on the hydrophobicity of the TMD. Much less is known about bacterial TAMPs. The significance of our research is in identifying the role of TMD hydrophobicity in the routing of E. coli TAMPs. Our data suggest that both the nature of the TMD and its role in routing can be very different for TAMPs versus “regular” membrane proteins. Elucidating these position-specific effects of TMDs will increase our understanding of how prokaryotic cells face the challenge of producing a wide variety of membrane proteins.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Haixiu Wang ◽  
Raquel Sanz Garcia ◽  
Eric Cox ◽  
Bert Devriendt

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains are important pathogens for humans and farm animals such as pigs. Porcine ETEC strains induce diarrhea through the production of heat-labile enterotoxin (LT) and/or heat-stable enterotoxins (pSTa/STb). Although LT secretion levels differ between porcine ETEC strains, and this has been linked to virulence, it is unclear whether ST secretion levels also differ between porcine ETEC strains. In addition, the molecular mechanism underlying different LT secretion levels has not been elucidated. In this work, multiple porcine ETEC strains were assessed for their capacity to produce and secrete the enterotoxins LT, pSTa, and STb. The strains differed greatly in their capacity to secrete LT, pSTa, and STb. Remarkably, in some strains, periplasmic production did not correlate with their ability to secrete LT, resulting in high periplasmic production and low LT secretion levels. Furthermore, the results indicated that the type II secretion system (T2SS) protein YghG plays a regulatory role in controlling LT secretion levels. These findings highlight YghG as an important mediator of the secretion of the heat-labile enterotoxin LT by porcine ETEC strains and provide better insights into ETEC enterotoxin secretion. IMPORTANCE Enterotoxigenic E. coli strains are a major health concern. Enterotoxins secreted by enterotoxigenic E. coli are crucial for diarrhea induction. Enterotoxin secretion levels differ between strains; however, it is currently unclear what drives these differences. The discrepancy in the production and secretion capacities of enterotoxins in ETEC is important to clarify their function involved in diarrhea induction. Our results further deepen our understanding of how type II secretion system (T2SS) components of ETEC control enterotoxin secretion levels and may lay the foundation for a better understanding of ETEC molecular pathogenesis.


2011 ◽  
Vol 79 (12) ◽  
pp. 4819-4827 ◽  
Author(s):  
Jin-Hyung Lee ◽  
Sushil Chandra Regmi ◽  
Jung-Ae Kim ◽  
Moo Hwan Cho ◽  
Hyungdon Yun ◽  
...  

ABSTRACTPathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagicEscherichia coliO157:H7. The antioxidant phloretin, which is abundant in apples, markedly reducedE. coliO157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensalE. coliK-12 biofilms. Also, phloretin reducedE. coliO157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyEandstx2), autoinducer-2 importer genes (lsrACDBF), curli genes (csgAandcsgB), and dozens of prophage genes inE. coliO157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production inE. coliO157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory responsein vitrousing human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor ofE. coliO157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensalE. colibiofilms.


2021 ◽  
Author(s):  
◽  
Immaculate Nabawanuka

Background: The transmission of diseases caused by pathogenic bacteria is still a threat. One of the potential sources of bacterial diseases is the door handles. This study aimed at isolating, identifying bacteria, determining total bacterial load, and determining antibiotic susceptibility patterns of bacteria obtained from door handles in Makerere university. Methodology:  A total of 60 samples randomly scattered within the university were swabbed and analyzed for bacterial growth. Samples were inoculated on MacConkey and blood agar and then incubated at 37 ºC for 24 hours. All sample isolates were sub cultured and identified based on macro and micromorphology, and standard biochemical tests. The establishment of the total bacterial load was done using the standard plate count method. Antibiotic susceptibility testing was done using the disc diffusion method on Muller Hilton agar. Results: The following bacterial species and genera were obtained from door handles, staphylococcus aureus (30.8%), Coagulase-negative staphylococcus (12.0%), Streptococcus species (24.2%), Escherichia coli (7.7%), Pseudomonas aeruginosa (14.3%), bacilli species (11.0%). The study showed that there was a significant difference in the prevalence of bacilli species (p= 0.017) and E. coli (p= 0.015) among the study group. The results from total bacterial count indicated that toilet door handles had the highest bacterial load compared to office door handles and classrooms. Antibiotic susceptibility testing of isolates showed that all bacteria were resistant and intermediately resistant to commonly used antibiotics except for Escherichia coli that was susceptible to amoxicillin Conclusion and recommendations: The study reveals that door handles are a considerable source of pathogenic bacteria thus play a major role in the transmission of diseases caused by such bacteria. Further studies could be done and different study groups could be included for example routinely opened doors and the doors which are not routinely opened.


2020 ◽  
Author(s):  
Arun Gonzales Decano ◽  
Nghia Tran ◽  
Hawriya Al-Foori ◽  
Buthaina Al-Awadi ◽  
Leigh Campbell ◽  
...  

The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Revathy Krishnamurthi ◽  
Swagatha Ghosh ◽  
Supriya Khedkar ◽  
Aswin Sai Narain Seshasayee

ABSTRACT Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli, we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent. Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT, which are adjacent to and coded divergently to racR. IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli, we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.


2013 ◽  
Vol 81 (4) ◽  
pp. 1129-1139 ◽  
Author(s):  
John K. Crane ◽  
Tonniele M. Naeher ◽  
Jacqueline E. Broome ◽  
Edgar C. Boedeker

ABSTRACTXanthine oxidase (XO), also known as xanthine oxidoreductase, has long been considered an important host defense molecule in the intestine and in breastfed infants. Here, we present evidence that XO is released from and active in intestinal tissues and fluids in response to infection with enteropathogenicEscherichia coli(EPEC) and Shiga-toxigenicE. coli(STEC), also known as enterohemorrhagicE. coli(EHEC). XO is released into intestinal fluids in EPEC and STEC infection in a rabbit animal model. XO activity results in the generation of surprisingly high concentrations of uric acid in both cultured cell and animal models of infection. Hydrogen peroxide (H2O2) generated by XO activity triggered a chloride secretory response in intestinal cell monolayers within minutes but decreased transepithelial electrical resistance at 6 to 22 h. H2O2generated by XO activity was effective at killing laboratory strains ofE. coli, commensal microbiotas, and anaerobes, but wild-type EPEC and STEC strains were 100 to 1,000 times more resistant to killing or growth inhibition by this pathway. Instead of killing pathogenic bacteria, physiologic concentrations of XO increased virulence by inducing the production of Shiga toxins from STEC strains.In vivo, exogenous XO plus the substrate hypoxanthine did not protect and instead worsened the outcome of STEC infection in the rabbit ligated intestinal loop model of infection. XO released during EPEC and STEC infection may serve as a virulence-inducing signal to the pathogen and not solely as a protective host defense.


Sign in / Sign up

Export Citation Format

Share Document