scholarly journals Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Rebekah M. Dedrick ◽  
Bailey E. Smith ◽  
Rebecca A. Garlena ◽  
Daniel A. Russell ◽  
Haley G. Aull ◽  
...  

ABSTRACT Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains. IMPORTANCE Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Elucidation of the variation in phage infection and factors determining it, expansion of the suite of therapeutic phage candidates, and a greater understanding of phage resistance mechanisms substantially advances the potential for broad implementation of new therapeutic options for M. abscessus infections.

2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Matt D. Johansen ◽  
Wassim Daher ◽  
Françoise Roquet-Banères ◽  
Clément Raynaud ◽  
Matthéo Alcaraz ◽  
...  

ABSTRACT Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases. As it is intrinsically resistant to most conventional antibiotics, there is an unmet medical need for effective treatments. Repurposing of clinically validated pharmaceuticals represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. In this context, rifabutin (RFB) has been shown to be active against M. abscessus and has raised renewed interest in using rifamycins for the treatment of M. abscessus pulmonary diseases. Here, we compared the in vitro and in vivo activity of RFB against the smooth and rough variants of M. abscessus, differing in their susceptibility profiles to several drugs and physiopathologial characteristics. While the activity of RFB is greater against rough strains than in smooth strains in vitro, suggesting a role of the glycopeptidolipid layer in susceptibility to RFB, both variants were equally susceptible to RFB inside human macrophages. RFB treatment also led to a reduction in the number and size of intracellular and extracellular mycobacterial cords. Furthermore, RFB was highly effective in a zebrafish model of infection and protected the infected larvae from M. abscessus-induced killing. This was corroborated by a significant reduction in the overall bacterial burden, as well as decreased numbers of abscesses and cords, two major pathophysiological traits in infected zebrafish. This study indicates that RFB is active against M. abscessus both in vitro and in vivo, further supporting its potential usefulness as part of combination regimens targeting this difficult-to-treat mycobacterium.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Paulami Rudra ◽  
Kelley Hurst-Hess ◽  
Pascal Lappierre ◽  
Pallavi Ghosh

ABSTRACTTetracyclines have been one of the most successful classes of antibiotics. However, its extensive use has led to the emergence of widespread drug resistance, resulting in discontinuation of use against several bacterial infections. Prominent resistance mechanisms include drug efflux and the use of ribosome protection proteins. Infrequently, tetracyclines can be inactivated by the TetX class of enzymes, also referred to as tetracycline destructases. Low levels of tolerance to tetracycline inMycobacterium smegmatisandMycobacterium tuberculosishave been previously attributed to the WhiB7-dependent TetV/Tap efflux pump. However,Mycobacterium abscessusis ∼500-fold more resistant to tetracycline thanM. smegmatisandM. tuberculosis. In this report, we show that this high level of resistance to tetracycline and doxycycline inM. abscessusis conferred by a WhiB7-independent tetracycline-inactivating monooxygenase, MabTetX (MAB_1496c). The presence of sublethal doses of tetracycline and doxycycline results in a >200-fold induction of MabTetX, and an isogenic deletion strain is highly sensitive to both antibiotics. Further, purified MabTetX can rapidly monooxygenate both antibiotics. We also demonstrate that expression of MabTetX is repressed by MabTetRx, by binding to an inverted repeat sequence upstream of MabTetRx; the presence of either antibiotic relieves this repression. Moreover, anhydrotetracycline (ATc) can effectively inhibit MabTetX activityin vitroand decreases the MICs of both tetracycline and doxycyclinein vivo. Finally, we show that tigecycline, a glycylcycline tetracycline, not only is a poor substrate of MabTetX but also is incapable of inducing the expression of MabTetX. This is therefore the first demonstration of a tetracycline-inactivating enzyme in mycobacteria. It (i) elucidates the mechanism of tetracycline resistance inM. abscessus, (ii) demonstrates the use of an inhibitor that can potentially reclaim the use of tetracycline and doxycycline, and (iii) identifies two sequential bottlenecks—MabTetX and MabTetRx—for acquiring resistance to tigecycline, thereby reiterating its use againstM. abscessus.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Lillian J. Juttukonda ◽  
Erin R. Green ◽  
Zachery R. Lonergan ◽  
Marie C. Heffern ◽  
Christopher J. Chang ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that causes diverse infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired antimicrobial-resistance mechanisms,A. baumanniiisolates are commonly multidrug resistant, and infections are notoriously difficult to treat. The World Health Organization recently highlighted carbapenem-resistantA. baumanniias a “critical priority” for the development of new antimicrobials because of the risk to human health posed by this organism. Therefore, it is important to discover the mechanisms used byA. baumanniito survive stresses encountered during infection in order to identify new drug targets. In this study, by use ofin vivoimaging, we identified hydrogen peroxide (H2O2) as a stressor produced in the lung duringA. baumanniiinfection and defined OxyR as a transcriptional regulator of the H2O2stress response. Upon exposure to H2O2,A. baumanniidifferentially transcribes several hundred genes. However, the transcriptional upregulation of genes predicted to detoxify hydrogen peroxide is abolished in anA. baumanniistrain in which the transcriptional regulatoroxyRis genetically inactivated. Moreover, inactivation ofoxyRin both antimicrobial-susceptible and multidrug-resistantA. baumanniistrains impairs growth in the presence of H2O2. OxyR is a direct regulator ofkatEandahpF1, which encode the major H2O2-degrading enzymes inA. baumannii, as confirmed through measurement of promoter binding by recombinant OxyR in electromobility shift assays. Finally, anoxyRmutant is less fit than wild-typeA. baumanniiduring infection of the murine lung. This work reveals a mechanism used by this important human pathogen to survive H2O2stress encountered during infection.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Andrew T. Nishimoto ◽  
Sarah G. Whaley ◽  
Nathan P. Wiederhold ◽  
Qing Zhang ◽  
Christopher M. Yates ◽  
...  

ABSTRACT VT-1161 and VT-1598 are promising investigational tetrazole antifungals that have shown in vitro and in vivo activity against Candida and other fungi. Candida glabrata is a problematic opportunistic pathogen that is associated with high mortality in invasive infection, as well as both intrinsic and rapidly acquired antifungal resistance. The MICs of VT-1161 and VT-1598 were determined by CLSI methodology to evaluate their in vitro activities against clinical C. glabrata isolates and strains containing individual deletions of the zinc cluster transcription factor genes PDR1 and UPC2A as well as the efflux transporter genes CDR1, PDH1, and SNQ2. Overall, both tetrazoles demonstrated relative activities comparable to those of the tested triazole antifungals against clinical C. glabrata isolates (MIC range, 0.25 to 2 mg/liter and 0.5 to 2 μg/ml for VT-1161 and VT-1598, respectively). Deletion of the PDR1 gene in fluconazole-resistant matched clinical isolate SM3 abolished the decreased susceptibility phenotype completely for both VT-1161 and VT-1598, similarly to the triazoles. UPC2A deletion also increased susceptibility to both triazoles and tetrazoles but to a lesser extent than PDR1 deletion. Of the three major transporter genes regulated by Pdr1, CDR1 deletion resulted in the largest MIC reductions for all agents tested, while PDH1 and SNQ2 deletion individually impacted MICs very little. Overall, both VT-1161 and VT-1598 have comparable activities to those of the available triazoles, and decreased susceptibility to these tetrazoles in C. glabrata is driven by many of the same known resistance mechanisms.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James D. Blanchard ◽  
Valerie Elias ◽  
David Cipolla ◽  
Igor Gonda ◽  
Luiz E. Bermudez

ABSTRACT Nontuberculous mycobacteria (NTM) affect an increasing number of individuals worldwide. Infection with these organisms is more common in patients with chronic lung conditions, and treatment is challenging. Quinolones, such as ciprofloxacin, have been used to treat patients, but the results have not been encouraging. In this report, we evaluate novel formulations of liposome-encapsulated ciprofloxacin (liposomal ciprofloxacin) in vitro and in vivo. Its efficacy against Mycobacterium avium and Mycobacterium abscessus was examined in macrophages, in biofilms, and in vivo using intranasal instillation mouse models. Liposomal ciprofloxacin was significantly more active than free ciprofloxacin against both pathogens in macrophages and biofilms. When evaluated in vivo, treatment with the liposomal ciprofloxacin formulations was associated with significant decreases in the bacterial loads in the lungs of animals infected with M. avium and M. abscessus. In summary, topical delivery of liposomal ciprofloxacin in the lung at concentrations greater than those achieved in the serum can be effective in the treatment of NTM, and further evaluation is warranted.


2019 ◽  
Vol 202 (6) ◽  
Author(s):  
Hector Gabriel Morales-Filloy ◽  
Yaqing Zhang ◽  
Gabriele Nübel ◽  
Shilpa Elizabeth George ◽  
Natalya Korn ◽  
...  

ABSTRACT Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5′ ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus. Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium’s physiology, was found to be 5′ NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the −1 position of the P3 promoter. An increase in RNAIII’s NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII’s secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII’s secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo. Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria. IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5′ NAD cap in specific RNAs. While the presence of the 5′ NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5′ NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium’s virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Jorge Arca-Suárez ◽  
Pablo Fraile-Ribot ◽  
Juan Carlos Vázquez-Ucha ◽  
Gabriel Cabot ◽  
Marta Martínez-Guitián ◽  
...  

ABSTRACT Selection of extended-spectrum mutations in narrow-spectrum oxacillinases (e.g., OXA-2 and OXA-10) is an emerging mechanism for development of in vivo resistance to ceftolozane-tazobactam and ceftazidime-avibactam in Pseudomonas aeruginosa. Detection of these challenging enzymes therefore seems essential to prevent clinical failure, but the complex phenotypic plasticity exhibited by this species may often lead to their underestimation. The underlying resistance mechanisms of two sequence type 175 (ST175) P. aeruginosa isolates showing multidrug-resistant phenotypes and recovered at early and late stages of a long-term nosocomial infection were evaluated. Whole-genome sequencing (WGS) was used to investigate resistance genomics, whereas molecular and biochemical methods were used for characterization of a novel extended-spectrum OXA-2 variant selected during therapy. The metallo-β-lactamase blaVIM-20 and the narrow-spectrum oxacillinase blaOXA-2 were present in both isolates, although they differed by an inactivating mutation in the mexB subunit, present only in the early isolate, and in a mutation in the blaOXA-2 β-lactamase, present only in the final isolate. The new OXA-2 variant, designated OXA-681, conferred elevated MICs of the novel cephalosporin–β-lactamase inhibitor combinations in a PAO1 background. Compared to OXA-2, kinetic parameters of the OXA-681 enzyme revealed a substantial increase in the hydrolysis of cephalosporins, including ceftolozane. We describe the emergence of the novel variant OXA-681 during treatment of a nosocomial infection caused by a Pseudomonas aeruginosa ST175 high-risk clone. The ability of OXA-681 to confer cross-resistance to ceftolozane-tazobactam and ceftazidime-avibactam together with the complex antimicrobial resistance profiles exhibited by the clinical strains harboring this new enzyme argue for maintaining active surveillance on emerging broad-spectrum resistance in P. aeruginosa.


2020 ◽  
Vol 65 (1) ◽  
pp. e01470-20
Author(s):  
Michael Y. T. Chow ◽  
Rachel Yoon Kyung Chang ◽  
Mengyu Li ◽  
Yuncheng Wang ◽  
Yu Lin ◽  
...  

ABSTRACTInhaled bacteriophage (phage) therapy is a potential alternative to conventional antibiotic therapy to combat multidrug-resistant (MDR) Pseudomonas aeruginosa infections. However, pharmacokinetics (PK) and pharmacodynamics (PD) of phages are fundamentally different from antibiotics and the lack of understanding potentially limits optimal dosing. The aim of this study was to investigate the in vivo PK and PD profiles of antipseudomonal phage PEV31 delivered by pulmonary route in immune-suppressed mice. BALB/c mice were administered phage PEV31 at doses of 107 and 109 PFU by the intratracheal route. Mice (n = 4) were sacrificed at 0, 1, 2, 4, 8, and 24 h posttreatment and various tissues (lungs, kidney, spleen, and liver), bronchoalveolar lavage fluid, and blood were collected for phage quantification. In a separate study combining phage with bacteria, mice (n = 4) were treated with PEV31 (109 PFU) or phosphate-buffered saline (PBS) at 2 h postinoculation with MDR P. aeruginosa. Infective PEV31 and bacteria were enumerated from the lungs. In the phage-only study, the PEV31 titer gradually decreased in the lungs over 24 h, with a half-life of approximately 8 h for both doses. In the presence of bacteria, in contrast, the PEV31 titer increased by almost 2-log10 in the lungs at 16 h. Furthermore, bacterial growth was suppressed in the PEV31-treated group, while the PBS-treated group showed exponential growth. Of the 10 colonies tested, four phage-resistant isolates were observed from the lung homogenates sampled at 24 h after phage treatment. These colonies had a different antibiogram to the parent bacteria. This study provides evidence that pulmonary delivery of phage PEV31 in mice can reduce the MDR bacterial burden.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Angela T. Nguyen ◽  
Luke K. Brewer ◽  
Justin Bevere ◽  
Jace W. Jones ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that requires iron for virulence. Iron homeostasis is maintained in part by the PrrF1 and PrrF2 small RNAs (sRNAs), which block the expression of iron-containing proteins under iron-depleted conditions. The PrrF sRNAs also promote the production of the Pseudomonas quinolone signal (PQS), a quorum sensing molecule that activates the expression of several virulence genes. The tandem arrangement of the prrF genes allows for expression of a third sRNA, PrrH, which is predicted to regulate gene expression through its unique sequence derived from the prrF1-prrF2 intergenic (IG) sequence (the PrrHIG sequence). Previous studies showed that the prrF locus is required for acute lung infection. However, the individual functions of the PrrF and PrrH sRNAs were not determined. Here, we describe a system for differentiating PrrF and PrrH functions by deleting the PrrHIG sequence [prrF(ΔHIG)]. Our analyses of this construct indicate that the PrrF sRNAs, but not PrrH, are required for acute lung infection by P. aeruginosa. Moreover, we show that the virulence defect of the ΔprrF1-prrF2 mutant is due to decreased bacterial burden during acute lung infection. In vivo analysis of gene expression in lung homogenates shows that PrrF-mediated regulation of genes for iron-containing proteins is disrupted in the ΔprrF1-prrF2 mutant during infection, while the expression of genes that mediate PrrF-regulated PQS production are not affected by prrF deletion in vivo. Combined, these studies demonstrate that regulation of iron utilization plays a critical role in P. aeruginosa's ability to survive during infection.


2014 ◽  
Vol 82 (5) ◽  
pp. 1755-1765 ◽  
Author(s):  
Dilini Chandrapala ◽  
Kyumson Kim ◽  
Younho Choi ◽  
Amal Senevirathne ◽  
Dong-Hyun Kang ◽  
...  

ABSTRACTCronobacter sakazakiiis an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of theinvgene in the virulence ofC. sakazakiiATCC 29544in vitroandin vivo. Sequence analysis ofC. sakazakiiATCC 29544invrevealed that it is different from otherC. sakazakiiisolates. In various cell culture models, an Δinvdeletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that theinvgene product mediates basolateral invasion ofC. sakazakiiATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompAand Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance ofinvand the additive effect of putative Inv and OmpA were also proven in anin vivorat pup model. This report is the first to demonstrate two proteins working synergisticallyin vitro, as well asin vivoinC. sakazakiipathogenesis.


Sign in / Sign up

Export Citation Format

Share Document