scholarly journals A Complex Relationship between Immunity and Metabolism inDrosophilaDiet-Induced Insulin Resistance

2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Laura Palanker Musselman ◽  
Jill L. Fink ◽  
Ana R. Grant ◽  
Jared A. Gatto ◽  
Bryon F. Tuthill ◽  
...  

ABSTRACTBoth systemic insulin resistance and tissue-specific insulin resistance have been described inDrosophilaand are accompanied by many indicators of metabolic disease. The downstream mediators of insulin-resistant pathophysiology remain unclear. We analyzed insulin signaling in the fat body studying loss and gain of function. When expression of the soleDrosophilainsulin receptor (InR) was reduced in larval fat bodies, animals exhibited developmental delay and reduced size in a diet-dependent manner. Fat body InR knockdown also led to reduced survival on high-sugar diets. To look downstream of InR at potential mediators of insulin resistance, transcriptome sequencing (RNA-seq) studies in insulin-resistant fat bodies revealed differential expression of genes, including those involved in innate immunity. Obesity-associated insulin resistance led to increased susceptibility of flies to infection, as in humans. Reduced innate immunity was dependent on fat body InR expression. The peptidoglycan recognition proteins (PGRPs) PGRP-SB2 and PGRP-SC2 were selected for further study based on differential expression studies. Downregulating PGRP-SB2 selectively in the fat body protected animals from the deleterious effects of overnutrition, whereas downregulating PGRP-SC2 produced InR-like phenotypes. These studies extend earlier work linking the immune and insulin signaling pathways and identify new targets of insulin signaling that could serve as potential drug targets to treat type 2 diabetes.

2020 ◽  
Vol 8 (1) ◽  
pp. e000820 ◽  
Author(s):  
Ann-Ki Pålbrink ◽  
Franziska Kopietz ◽  
Björn Morén ◽  
René In 't Zandt ◽  
Federico Kalinec ◽  
...  

ObjectiveThe mechanisms underlying the association between diabetes and inner ear dysfunction are not known yet. The aim of the present study is to evaluate the impact of obesity/insulin resistance on inner ear fluid homeostasis in vivo, and to investigate whether the organ of Corti could be a target tissue for insulin signaling using auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells as an in vitro model.MethodsHigh fat diet (HFD) fed C57BL/6J mice were used as a model to study the impact of insulin resistance on the inner ear. In one study, 12 C57BL/6J mice were fed either control diet or HFD and the size of the inner ear endolymphatic fluid compartment (EFC) was measured after 30 days using MRI and gadolinium contrast as a read-out. In another study, the size of the inner ear EFC was evaluated in eight C57BL/6J mice both before and after HFD feeding, with the same techniques. HEI-OC1 auditory cells were used as a model to investigate insulin signaling in organ of Corti cells.ResultsHFD feeding induced an expansion of the EFC in C57BL/6J mice, a hallmark of inner ear dysfunction. Insulin also induced phosphorylation of protein kinase B (PKB/Akt) at Ser473, in a PI3-kinase-dependent manner. The phosphorylation of PKB was inhibited by isoproterenol and IBMX, a general phosphodiesterase (PDE) inhibitor. PDE1B, PDE4D and the insulin-sensitive PDE3B were found expressed and catalytically active in HEI-OC1 cells. Insulin decreased and AICAR, an activator of AMP-activated protein kinase, increased the phosphorylation at the inhibitory Ser79 of acetyl-CoA carboxylase, the rate-limiting enzyme in de novo lipogenesis. Furthermore, the activity of hormone-sensitive lipase, the rate-limiting enzyme in lipolysis, was detected in HEI-OC1 cells.ConclusionsThe organ of Corti could be a target tissue for insulin action, and inner ear insulin resistance might contribute to the association between diabetes and inner ear dysfunction.


2016 ◽  
Vol 94 (8) ◽  
pp. 819-828 ◽  
Author(s):  
Enas S. Gad ◽  
Sawsan A. Zaitone ◽  
Yasser M. Moustafa

Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg−1) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.


2015 ◽  
Vol 29 (4) ◽  
pp. 528-541 ◽  
Author(s):  
Jiali Liu ◽  
Huixia Li ◽  
Bo Zhou ◽  
Lin Xu ◽  
Xiaomin Kang ◽  
...  

Abstract Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the underlying mechanisms of PGRN in the regulation of insulin sensitivity and autophagy remain elusive. In this study, we aimed to address the direct effects of PGRN in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. We found that mice treated with PGRN for 21 days exhibited the impaired glucose tolerance and insulin tolerance and hepatic autophagy imbalance as well as defective insulin signaling. Furthermore, treatment of mice with TNF receptor (TNFR)-1 blocking peptide-Fc, a TNFR1 blocking peptide-Fc fusion protein to competitively block the interaction of PGRN and TNFR1, resulted in the restoration of systemic insulin sensitivity and the recovery of autophagy and insulin signaling in liver. Consistent with these findings in vivo, we also observed that PGRN treatment induced defective autophagy and impaired insulin signaling in hepatocytes, with such effects being drastically nullified by the addition of TNFR1 blocking peptide -Fc or TNFR1-small interference RNA via the TNFR1-nuclear factor-κB-dependent manner, indicating the causative role of PGRN in hepatic insulin resistance. In conclusion, our findings supported the notion that PGRN is a key regulator of hepatic insulin resistance and that PGRN may mediate its effects, at least in part, by inducing defective autophagy via TNFR1/nuclear factor-κB.


Author(s):  
Matthew Bucher ◽  
Kim Ramil C. Montaniel ◽  
Leslie Myatt ◽  
Susan Weintraub ◽  
Hagai Tavori ◽  
...  

Abstract Obesity is a chronic condition associated with dyslipidemia and insulin resistance. Here, we show that the offspring of obese mothers are dyslipidemic and insulin resistant from the outset. Maternal and cord blood and placental tissues were collected following C-section at term. Patients were grouped as being normal weight (NW, BMI = 18–24.9) or obese (OB, BMI ≥ 30), and separated by fetal sex. We measured plasma lipids, insulin, and glucose in maternal and cord blood. Insulin resistance was quantified using the HOMA-IR. Placental markers of lipid and energy metabolism and relevant metabolites were measured by western blot and metabolomics, respectively. For OB women, total cholesterol was decreased in both maternal and cord blood, while HDL was decreased only in cord blood, independent of sex. In babies born to OB women, cord blood insulin and insulin resistance were increased. Placental protein expression of the energy and lipid metabolism regulators PGC1α, and SIRT3, ERRα, CPT1α, and CPT2 decreased with maternal obesity in a sex-dependent manner (P < 0.05). Metabolomics showed lower levels of acylcarnitines C16:0, C18:2, and C20:4 in OB women’s placentas, suggesting a decrease in β-oxidation. Glutamine, glutamate, alpha-ketoglutarate (αKG), and 2-hydroxyglutarate (2-HG) were increased, and the glutamine-to-glutamate ratio decreased (P < 0.05), in OB placentas, suggesting induction of glutamate into αKG conversion to maintain a normal metabolic flux. Newly-born offspring of obese mothers begin their lives dyslipidemic and insulin resistant. If not inherited genetically, such major metabolic perturbations might be explained by abnormal placental metabolism with potential long-term adverse consequences for the offspring’s health and wellbeing.


2017 ◽  
Vol 312 (6) ◽  
pp. E482-E494 ◽  
Author(s):  
Ingrid Dahlman ◽  
Yasmina Belarbi ◽  
Jurga Laurencikiene ◽  
Annie M. Pettersson ◽  
Peter Arner ◽  
...  

The key pathological link between obesity and type 2 diabetes is insulin resistance, but the molecular mechanisms are not entirely identified. micro-RNAs (miRNA) are dysregulated in obesity and may contribute to insulin resistance. Our objective was to detect and functionally investigate miRNAs linked to insulin sensitivity in human subcutaneous white adipose tissue (scWAT). Subjects were selected based on the insulin-stimulated lipogenesis response of subcutaneous adipocytes. Global miRNA profiling was performed in abdominal scWAT of 18 obese insulin-resistance (OIR), 21 obese insulin-sensitive (OIS), and 9 lean women. miRNAs demonstrating differential expression between OIR and OIS women were overexpressed in human in vitro-differentiated adipocytes followed by assessment of lipogenesis and identification of miRNA targets by measuring mRNA/protein expression and 3′-untranslated region analysis. Eleven miRNAs displayed differential expression between OIR and OIS states. Overexpression of miR-143-3p and miR-652-3p increased insulin-stimulated lipogenesis in human in vitro differentiated adipocytes and directly or indirectly affected several genes/proteins involved in insulin signaling at transcriptional or posttranscriptional levels. Adipose expression of miR-143-3p and miR-652-3p was positively associated with insulin-stimulated lipogenesis in scWAT independent of body mass index. In conclusion, miR-143-3p and miR-652-3p are linked to scWAT insulin resistance independent of obesity and influence insulin-stimulated lipogenesis by interacting at different steps with insulin-signaling pathways.


Reproduction ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Erica Louden ◽  
Maggie M Chi ◽  
Kelle H Moley

Maternal insulin resistance results in poor pregnancy outcomes. In vivo and in vitro exposure of the murine blastocyst to high insulin or IGF1 results in the down-regulation of the IGF1 receptor (IGF1R). This in turn leads to decreased glucose uptake, increased apoptosis, as well as pregnancy resorption and growth restriction. Recent studies have shown that blastocyst activation of AMP-activated protein kinase (AMPK) reverses these detrimental effects; however, the mechanism was not clear. The objective of this study was to determine how AMPK activation rescues the insulin-resistant blastocyst. Using trophoblast stem (TS) cells derived from the blastocyst, insulin resistance was recreated by transfecting with siRNA to Igf1r and down-regulating expression of the protein. These cells were then exposed to AMPK activators 5-aminoimidazole-4-carboxamide riboside and phenformin, and evaluated for apoptosis, insulin-stimulated 2-deoxyglucose uptake, PI3-kinase activity, and levels of phospho-AKT, phospho-mTor, and phospho-70S6K. Surprisingly, disrupted insulin signaling led to decreased AMPK activity in TS cells. Activators reversed these effects by increasing the AMP/ATP ratio. Moreover, this treatment increased insulin-stimulated 2-deoxyglucose transport and cell survival, and led to an increase in PI3-kinase activity, as well as increased P-mTOR and p70S6K levels. This study is the first to demonstrate significant crosstalk between the AMPK and insulin signaling pathways in embryonic cells, specifically the enhanced response of PI3K/AKT/mTOR to AMPK activation. Decreased insulin signaling also resulted in decreased AMPK activation. These findings provide mechanistic targets in the AMPK signaling pathway that may be essential for improved pregnancy success in insulin-resistant states.


2011 ◽  
Vol 301 (4) ◽  
pp. E587-E598 ◽  
Author(s):  
Ling Zhao ◽  
Pan Hu ◽  
Yijun Zhou ◽  
Jaanki Purohit ◽  
Daniel Hwang

Chronic inflammation is associated with obesity and insulin resistance; however, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and nucleotide-oligomerization domain-containing proteins play critical roles in innate immune response. Here, we report that activation of nucleotide binding oligomerization domain-containing protein-1 (NOD1) in adipocytes induces proinflammatory response and impairs insulin signaling and insulin-induced glucose uptake. NOD1 and NOD2 mRNA are markedly increased in differentiated murine 3T3-L1 adipocytes and human primary adipocyte culture upon adipocyte conversion. Moreover, NOD1 mRNA is markedly increased only in the fat tissues in diet-induced obese mice, but not in genetically obese ob/ob mice. Stimulation of NOD1 with a synthetic ligand Tri-DAP induces proinflammatory chemokine MCP-1, RANTES, and cytokine TNF-α and MIP-2 (human IL-8 homolog) and IL-6 mRNA expression in 3T3-L1 adipocytes in a time- and dose-dependent manner. Similar proinflammatory profiles are observed in human primary adipocyte culture stimulated with Tri-DAP. Furthermore, NOD1 activation suppresses insulin signaling, as revealed by attenuated tyrosine phosphorylation and increased inhibitory serine phosphorylation, of IRS-1 and attenuated phosphorylation of Akt and downstream target GSK3α/3β, resulting in decreased insulin-induced glucose uptake in 3T3-L1 adipocytes. Together, our results suggest that NOD1 may play an important role in adipose inflammation and insulin resistance in diet-induced obesity.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2164-2177 ◽  
Author(s):  
Caroline S. Achard ◽  
D. Ross Laybutt

Chronically elevated fatty acids contribute to insulin resistance through poorly defined mechanisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mechanism required for cell adaptation and survival. We aimed to distinguish the adaptive and deleterious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepatocytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signaling. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmitate exposure induces an adaptive UPR that enhances insulin signaling and protects against the effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to insulin resistance and metabolic dysregulation.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Yosdel Soto ◽  
Rabban Mangat ◽  
Ana M Vázquez ◽  
Spencer D Proctor

Background: The response-to-retention hypothesis for atherosclerosis describes subendothelial retention of apolipoprotein B-containing lipoproteins mediated by proteoglycans (PG). Further we know that diabetes is also associated with both increased circulating chylomicron remnants and remodeling of proatherogenic PGs. We have recently reported antiatherogenic properties of a novel chimeric monoclonal antibody (chP3R99) that recognizes PG sulfated molecules. Hypothesis: chP3R99 monoclonal antibody may interfere with the interaction of atherogenic lipoproteins with arterial sulfated PGs during insulin resistance. Methods and Results: chP3R99 antibody recognized sulfated glycosaminoglycans by ELISA showing a preferential binding to chondroitin sulfate. Also, chP3R99 blocked the interaction of proatherogenic lipoproteins with this glycosaminoglycan in vitro in a dose-dependent manner and its intravenous injection into healthy Sprague-Dawly rats (n=6, 1 mg/animal) inhibited LDL (4 mg/kg; intraperitoneally) aortic retention. To further assess this property in an insulin resistant condition, carotid arteries from control and JCR:LA-cp rats (n=4) were perfused ex vivo with apoB48 containing remnant lipoproteins (prepared via rabbit hepatectomy procedure), with or without Cy3-LDL (150 μg/mL) for 20 minutes. Confocal microscopy analysis revealed an increased arterial retention of both remnants (3.6 fold) and LDL (2.8 fold) in carotid vessels from insulin resistant rats relative to control. However, chP3R99 pre-perfusion resulted in decreased retention of remnants (-30%) and LDL (-60%) associated arterial cholesterol. Data suggests that the chP399 antibody may interfere with the arterial attachment of both remnants and LDL in vivo, but with differential efficacy. Conclusions: Relative to LDL, remnant lipoproteins had preferential accumulation in arterial vessels from insulin resistant rats ex vivo , which could then be inhibited by acute pre-exposure to the chP3R99 antibody. These in vivo data support the concept for an innovative approach to target the retention of proatherogenic lipoproteins in a pre-clinical setting.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Prem Sharma ◽  
Jennie Bever ◽  
Scott Heximer ◽  
Carmen Dessauer ◽  
Jerrold M Olefsky

Background: Insulin resistance is the hallmark of type 2 diabetes and is a known risk factor for the development of cardiovascular diseases. We have determined that overexpression of a GTPase-activating protein, RGS2 decreases insulin sensitivity. This study describes RGS2 regulation of insulin signaling pathways in order to assess whether this information can be used to reverse insulin insensitivity in diabetes. Hypothesis, Methods and Results: RGS2 protein levels were elevated 3 to 5-fold in white adipose tissues from ob/ob and high fat diet induced Insulin Resistant mice. Further, RGS2 protein is elevated in insulin resistant 3T3-L1 adipocytes treated chronically with either insulin, ET-1, or TNF-aplha. Further, SiRNA knockdown of endogenous RGS2 protein increases basal, insulin independent and insulin-dependent GLUT4 translocation. We hypothesized that the RGS2 regulatory system is defective/overactive in insulin resistance, and that a modulation of this regulatory system by RGS2 inhibition would improve insulin sensitivity. Thus, we determined the mechanisms whereby RGS2 modulates insulin sensitivity in 3T3-L1 adipocytes; focusing on insulin-regulated G-protein/PI3-K pathways leading to GLUT4 translocation and glucose uptake; utilizing adenoviruses over-expressing wild-type and mutants RGS2, as well as by siRNA-mediated knock down of endogenous RGS2. We overexpressed the Wild-Type (WT), GTPase defective (GD), and plasma membrane translocation defective (TD) RGS2 proteins in 3T3-L1 adipocytes. Overexpression of WT RGS2 leads to ~ 50% inhibition of insulin induced 2-DOG uptake, without affecting IR Tyr phosphorylation. RGS2 constitutively associates with Galpha/q11, and prevent its Tyr phosphorylation and activation by insulin. Interestingly, insulin-stimulated PKClambda phosphorylation was completely blocked by RGS2, whereas, AKT phosphorylation was minimally inhibited. Neither the insulin receptor tyrosine phosphorylation nor insulin-stimulated MAPK phosphorylation was affected by RGS2. Conclusion: This study identifies a novel role of RGS2 in cellular insulin resistance by negatively regulating signaling through the Galpha/q11 pathway to glucose uptake. This research has received full or partial funding support from the American Heart Association, AHA Western States Affiliate (California, Nevada & Utah).


Sign in / Sign up

Export Citation Format

Share Document