scholarly journals DDX3 Participates in Translational Control of Inflammation Induced by Infections and Injuries

2018 ◽  
Vol 39 (1) ◽  
Author(s):  
Yu-Chang Ku ◽  
Min-Hua Lai ◽  
Chen-Chia Lo ◽  
Yi-Chuan Cheng ◽  
Jian-Tai Qiu ◽  
...  

ABSTRACT Recent studies have suggested that DDX3 functions in antiviral innate immunity, but the underlying mechanism remains elusive. We previously identified target mRNAs whose translation is controlled by DDX3. Pathway enrichment analysis of these targets indicated that DDX3 is involved in various infections and inflammation. Using immunoblotting, we confirmed that PACT, STAT1, GNB2, Rac1, TAK1, and p38 mitogen-activated protein kinase (MAPK) proteins are downregulated by DDX3 knockdown in human monocytic THP-1 cells and epithelial HeLa cells. Polysome profiling revealed that DDX3 knockdown reduces the translational efficiency of target mRNAs. We further demonstrated DDX3-mediated translational control of target mRNAs by luciferase reporter assays. To examine the effects of DDX3 knockdown on macrophage migration and phagocytosis, we performed in vitro cell migration assay and flow cytometry analysis of the uptake of green fluorescent protein-expressing Escherichia coli in THP-1 cells. The DDX3 knockdown cells exhibited impaired macrophage migration and phagocytosis. Moreover, we used a human cytokine antibody array to identify the cytokines affected by DDX3 knockdown. Several chemokines were decreased considerably in DDX3 knockdown THP-1 cells after lipopolysaccharide or poly(I·C) stimulation. Lastly, we demonstrated that DDX3 is crucial for the recruitment of phagocytes to the site of inflammation in transgenic zebrafish.

2012 ◽  
Vol 108 (09) ◽  
pp. 427-434 ◽  
Author(s):  
Richard J. Fish ◽  
Marguerite Neerman-Arbez

SummaryHigh circulating fibrinogen levels correlate with cardiovascular disease (CVD) risk. Fibrinogen levels vary between people and also change in response to physiological and environmental stimuli. A modest proportion of the variation in fibrinogen levels can be explained by genotype, inferring that variation in genomic sequences that regulate the fibri-nogen genes (FGA, FGB and FGG) may affect hepatic fibrinogen production and perhaps CVD risk. We previously identified a conserved liver enhancer in the fibrinogen gene cluster (CNC12), between FGB and FGA. Genome-wide Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that transcription factors which bind fibrinogen gene promoters also interact with CNC12, as well as two potential fibrinogen enhancers (PFE), between FGA and FGG. Here we show that one of the PFE sequences has potent hepatocyte enhancer activity. Using a luciferase reporter gene system, we found that PFE2 enhances minimal promoter- and FGA promoter-driven gene expression in hepatoma cells, regardless of its orientation with respect to the promoters. A region within PFE2 bears a short series of conserved nucleotides which maintain enhancer activity without flanking sequence. We also demonstrate that PFE2 is a liver enhancer in vivo, driving enhanced green fluorescent protein expression in transgenic zebrafish larval livers. Our study shows that combining public domain ChIP-seq data with in vitro and in vivo functional tests can identify novel fibrinogen gene cluster regulatory sequences. Variation in such elements could affect fibrinogen production and influence CVD risk.


2000 ◽  
Vol 74 (3) ◽  
pp. 1085-1093 ◽  
Author(s):  
Feng Qu ◽  
T. Jack Morris

ABSTRACT The presence of translational control elements and cap structures has not been carefully investigated for members of theCarmovirus genus, a group of small icosahedral plant viruses with positive-sense RNA genomes. In this study, we examined both the 5′ and 3′ untranslated regions (UTRs) of the turnip crinkle carmovirus (TCV) genomic RNA (4 kb) as well as the 5′ UTR of the coat protein subgenomic RNA (1.45 kb) for their roles in translational regulation. All three UTRs enhanced translation of the firefly luciferase reporter gene to different extents. Optimal translational efficiency was achieved when mRNAs contained both 5′ and 3′ UTRs. The synergistic effect due to the 5′-3′ cooperation was at least fourfold greater than the sum of the contributions of the individual UTRs. The observed translational enhancement of TCV mRNAs occurred in a cap-independent manner, a result consistent with the demonstration, using a cap-specific antibody, that the 5′ end of the TCV genomic RNA was uncapped. Finally, the translational enhancement activity within the 5′ UTR of 1.45-kb subgenomic RNA was shown to be important for the translation of coat protein in protoplasts and for virulent infection in Arabidopsis plants.


2006 ◽  
Vol 11 (5) ◽  
pp. 469-480 ◽  
Author(s):  
Sanghamitra Bandyopadhyay ◽  
Jake Ni ◽  
Amy Ruggiero ◽  
Karen Walshe ◽  
Mark S. Rogers ◽  
...  

The authors employed a novel approach to identify therapeutics effective in Alzheimer disease (AD). The 5'untranslated region (5'UTR) of the mRNA of AD amyloid precursor protein (APP) is a significant regulator of the levels of the APP holoprotein and amyloid beta (Aβ) peptide in the central nervous system. The authors generated stable neuroblastoma SH-SY5Y transfectants that express luciferase under the translational control of the 146-nucleotide APP mRNA 5'UTR and green fluorescent protein (GFP) driven by a viral internal ribosomal entry site. Using a high-throughput screen (HTS), they screened for the effect of 110,000 compounds obtained from the library of the Laboratory for Drug Discovery on Neurodegeneration (LDDN) on the APP mRNA 5'UTR-controlled translation of the luciferase reporter. This screening yielded several nontoxic specific inhibitors of APP mRNA 5'UTR-driven luciferase that had no effect on the GFP expression in the stable SH-SY5Y transfectants. Moreover, these compounds either did not inhibit or inhibited to a much lower extent the expression of the luciferase reporter regulated by a prion protein (PrP) mRNA 5'UTR, used as an alternative mRNA structure to counterscreen APP mRNA 5'UTR in stably transfected SH-SY5Y cell lines. The hits obtained from this robust, specific, and highly quantitative HTS will be characterized to identify agents that may be developed into useful future therapeutic agents to limit APP translation and Aβ production for AD.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 346
Author(s):  
Caitlin W. Lehman ◽  
Kylene Kehn-Hall ◽  
Megha Aggarwal ◽  
Nicole R. Bracci ◽  
Han-Chi Pan ◽  
...  

The host proteins Protein Kinase B (AKT) and glycogen synthase kinase-3 (GSK-3) are associated with multiple neurodegenerative disorders. They are also important for the replication of Venezuelan equine encephalitis virus (VEEV), thereby making the AKT/GSK-3 pathway an attractive target for developing anti-VEEV therapeutics. Resveratrol, a natural phytochemical, has been shown to substantially inhibit the AKT pathway. Therefore, we attempted to explore whether it exerts any antiviral activity against VEEV. In this study, we utilized green fluorescent protein (GFP)- and luciferase-encoding recombinant VEEV to determine the cytotoxicity and antiviral efficacy via luciferase reporter assays, flow cytometry, and immunofluorescent assays. Our results indicate that resveratrol treatment is capable of inhibiting VEEV replication, resulting in increased viability of Vero and U87MG cells as well as reduced virion production and viral RNA contents within host cells for at least 48 h with a single treatment. Furthermore, the suppression of apoptotic signaling adaptors, caspase-3, caspase-7, and annexin V may also be implicated in resveratrol-mediated antiviral activity. We found that decreased phosphorylation of the AKT/GSK-3 pathway, mediated by resveratrol, can be triggered during the early stages of VEEV infection, suggesting that resveratrol disrupts the viral replication cycle and consequently promotes cell survival. Finally, molecular docking and dynamics simulation studies revealed that resveratrol can directly bind to VEEV glycoproteins, which may interfere with virus attachment and entry. In conclusion, our results suggest that resveratrol exerts inhibitory activity against VEEV infection and upon further modification could be a useful compound to study in neuroprotective research and veterinary sciences.


2020 ◽  
Vol 52 (9) ◽  
pp. 967-974
Author(s):  
Hui Zhang ◽  
Ningning Ji ◽  
Xinyan Gong ◽  
Shimao Ni ◽  
Yu Wang

Abstract Studies have shown that long non-coding RNAs (lncRNA) play critical roles in coronary atherosclerotic heart disease (CAD). However, the function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in CAD is unclear. In this study, we aimed to investigate the functions of lncRNA NEAT1 in CAD. RT-PCR and western blot analysis were carried out to examine the expressions of related RNAs. Colony formation assay, cell proliferation assay, apoptosis assay, and dual-luciferase reporter assay were conducted to investigate the abilities of colony migration, cell proliferation, apoptosis, and targeting. The results showed that NEAT1 was up-regulated in CAD blood samples and in human coronary endothelial cells (HCAECs). Transfection of pcNEAT1 significantly inhibited the survival rate of HCAECs and induced apoptosis of HCAECs. MiR-140-3p was down-regulated in HCAECs. NEAT1 directly targeted miR-140-3p, and the expression of miR-140-3p was inversely correlated with the expression of NEAT1 in CAD patients. In addition, co-transfection of NEAT1 with miR-140-3p mimic reversed the effect of pcNEAT1 on cell viability and apoptosis. mitogen-activated protein kinase 1 (MAPK1) was proved to be a target gene of miR-140-3p, and the miR-140-3p mimic was shown to reduce the expression of MAPK1 in HCAECs. pcNEAT1 significantly increased the expression level of MAPK1, while shNEAT1 significantly reduced the expression level of MAPK1. Our results revealed that lncRNA NEAT1 increased cell viability and inhibited CAD cell apoptosis possibly by activating the miR-140-3p/MAPK1 pathway, and lncRNA NEAT1 might serve as a potential therapeutic target for CAD.


Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


2008 ◽  
Vol 412 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Maria Ekerot ◽  
Marios P. Stavridis ◽  
Laurent Delavaine ◽  
Michael P. Mitchell ◽  
Christopher Staples ◽  
...  

DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling.


2002 ◽  
Vol 22 (20) ◽  
pp. 6931-6945 ◽  
Author(s):  
Ole Morten Seternes ◽  
Bjarne Johansen ◽  
Beate Hegge ◽  
Mona Johannessen ◽  
Stephen M. Keyse ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) pathway is an important mediator of cellular responses to environmental stress. Targets of p38 include transcription factors, components of the translational machinery, and downstream serine/threonine kinases, including MAPK-activated protein kinase 5 (MK5). Here we have used enhanced green fluorescent protein fusion proteins to analyze the subcellular localization of MK5. Although this protein is predominantly nuclear in unstimulated cells, MK5 shuttles between the nucleus and the cytoplasm. Furthermore, we have shown that the C-terminal domain of MK5 contains both a functional nuclear localization signal (NLS) and a leucine-rich nuclear export signal (NES), indicating that the subcellular distribution of this kinase reflects the relative activities of these two signals. In support of this, we have shown that stress-induced activation of the p38 MAPK stimulates the chromosomal region maintenance 1 protein-dependent nuclear export of MK5. This is regulated by both binding of p38 MAPK to MK5, which masks the functional NLS, and stress-induced phosphorylation of MK5 by p38 MAPK, which either activates or unmasks the NES. These properties may define the ability of MK5 to differentially phosphorylate both nuclear and cytoplasmic targets or alternatively reflect a mechanism whereby signals initiated by activation of MK5 in the nucleus may be transmitted to the cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document