scholarly journals Control of Adipogenesis by the SUMO-Specific Protease SENP2

2010 ◽  
Vol 30 (9) ◽  
pp. 2135-2146 ◽  
Author(s):  
Sung Soo Chung ◽  
Byung Yong Ahn ◽  
Min Kim ◽  
Hye Hun Choi ◽  
Ho Seon Park ◽  
...  

ABSTRACT Here, we demonstrate that SENP2, a desumoylating enzyme, plays a critical role in the control of adipogenesis. SENP2 expression was markedly increased upon the induction of adipocyte differentiation, and this increase was dependent on protein kinase A activation. Remarkably, knockdown of SENP2 led to a dramatic attenuation of adipogenesis with a marked decrease in PPARγ and C/EBPα mRNA levels. Knockdown of SENP2 also caused a marked reduction in the level of C/EBPβ protein but not in that of C/EBPβ mRNA. Interestingly, sumoylation of C/EBPβ dramatically increased its ubiquitination and destabilization, and this increase could be reversed by SENP2. In addition, overexpression of C/EBPβ could overcome the inhibitory effect of SENP2 knockdown on adipogenesis. Furthermore, SENP2 was absolutely required for adipogenesis of preadipocytes implanted into mice. These results establish a critical role for SENP2 in the regulation of adipogenesis by desumoylation and stabilization of C/EBPβ and in turn by promoting the expression of its downstream effectors, such as PPARγ and C/EBPα.

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4161-4170 ◽  
Author(s):  
R.L. Johnson ◽  
J.K. Grenier ◽  
M.P. Scott

The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed patched in wing imaginal discs and found that high Patched levels, expressed in either normal or ectopic patterns, result in loss of wing vein patterning in both compartments centering at the anterior/posterior border. In addition, patched inhibits the formation of the mechanosensory neurons, the campaniform sensilla, in the wing blade. The patched wing vein phenotype is modulated by mutations in hedgehog and cubitus interruptus (ci). Patched overexpression inhibits transcription of patched and decapentaplegic and post-transcriptionally decreases the amount of Ci protein at the anterior/posterior boundary. In hedgehogMrt wing discs, which express ectopic hedgehog, Ci levels are correspondingly elevated, suggesting that hedgehog relieves patched repression of Ci accumulation. Protein kinase A also regulates Ci; protein kinase A mutant clones in the anterior compartment have increased levels of Ci protein. Thus patched influences wing disc patterning by decreasing Ci protein levels and inactivating hedgehog target genes in the anterior compartment.


1997 ◽  
Vol 272 (1) ◽  
pp. C82-C89 ◽  
Author(s):  
S. Ledoux ◽  
J. C. Dussaule ◽  
C. Chatziantoniou ◽  
N. Ardaillou ◽  
S. Vandermeersch ◽  
...  

The purpose of this work was to examine whether the level of cAMP accumulation and protein kinase A (PKA) activity influence atrial natriuretic factor (ANF)-dependent guanosine 3',5'-cyclic monophosphate (cGMP) production in two renal cell types: rabbit cortical vascular smooth muscle cells (RCSMC) and SV-40-transformed human glomerular visceral epithelial cells (HGVEC-SV1). N-[2-(p-bromocinnamylamino)ethyl]- 5-isoquinolinesulfonamide (H-89), a PKA inhibitor, decreased ANF-stimulated cGMP production in RCSMC in a time- and concentration-dependent manner. ANF-stimulated cGMP production was markedly inhibited after prolonged 9- and 18-h incubations with 25 microM H-89 (52 and 65%, respectively) but was not altered after exposure of cells to this agent for 1 h. 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine and N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide, protein kinase inhibitors not selective for PKA, did not reproduce the effect of H-89, even at higher concentrations (50 and 100 microM). Cycloheximide (10 microM), a protein synthesis inhibitor, limited the inhibitory effect of H-89, although alone it did not modify the ANF-stimulated cGMP production. H-89 did not affect cGMP production when it was stimulated by SIN-1, a nitric oxide donor. Prolonged incubation (18 h) with 8-bromo cAMP or cholera toxin, an activator of Gs protein resulting in adenylate cyclase stimulation, enhanced ANF-dependent cGMP production by 225 and 176%, respectively. This stimulatory effect was blocked by 25 microM H-89. 125I-ANF binding to RCSMC at 4 degrees C was not affected by preincubation of the cells with H-89. There was a 44% decrease in the expression of ANF C receptors measured as the ANF-(4-23)-displaceable 125I-ANF binding at 37 degrees C, which could not, however, explain the inhibitory effect of H-89 on cGMP production. Modulation of ANF- and C-type natriuretic peptide-dependent cGMP production by H-89 and cholera toxin was also found in HGVEC-SV1 with the same characteristics as in RCSMC. Taken together, these results suggest that PKA activity controls the function of natriuretic peptide guanylate cyclase-coupled receptors in the two cell types studied. PKA-dependent inhibition of a negatively regulatory protein distinct from the receptor itself seems necessary for a full cGMP response.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244253
Author(s):  
Mohammad Shahidullah ◽  
William Stuart Wilson ◽  
Kazi Rafiq ◽  
Mahmudul Hasan Sikder ◽  
Jannatul Ferdous ◽  
...  

In order to elucidate involvement of cyclic AMP and intracellular Ca2+,[Ca2+]i, in the modulation of aqueous humour formation (AHF), we studied the effects of terbutaline, forskolin and 8-Br-cAMP in the isolated bovine eye. We also studied the interaction of cAMP on calcium signaling in cultured ciliary epithelial (CE) cells. Drug effects on AHF were measured by fluorescein dilution. Drug effects on [Ca2+]i were studied by the fura-2 fluorescence ratio technique. Terbutaline (100 nmol-100 M), forskolin (30 nM-100 M) or 8-Br-cAMP (100 nM– 10 μM), administered in the arterial perfusate produced significant reductions in AHF. The AH reducing effect of terbutaline was blocked by a selective inhibitor of protein kinase A (KT-5720). ATP (100 M) caused a rapid, transient (peak) increase in [Ca2+]i followed by a sustained plateau phase lasting more than 5 minutes. Preincubation of the cells (6 min) with terbutaline, forskolin or 8-Br-cAMP significantly reduced the peak calcium response to ATP. The sustained plateau phase of the response, on the other hand, was augmented by each of the agents. KT-5720 partially reversed the inhibitory effect of terbutaline on the peak and totally inhibited its effect on the plateau phase. These data indicate: (a) that AHF in the bovine eye can be manipulated through cyclic AMP, operating via protein kinase A, (b) that protein kinase A can affect [Ca2+]i homeostasis, (c) that calcium release from the intracellular store, not the entry, affects AHF, and (d) that interaction of [Ca2+]i with cAMP plays a role in modulating AH secretion.


2010 ◽  
Vol 4 (5) ◽  
pp. 721-729
Author(s):  
Hamid Yaghooti ◽  
Mohsen Firoozrai ◽  
Soudabeh Fallah ◽  
Mohammad Reza Khorramizadeh

Abstract Background: Adenosine is known as a protective and anti-inflammatory nucleoside. Angiotensin II is the main hormone of the renin-angiotensin system. It is associated with endothelial permeability, recruitment, and activation of the immune cells through induction of inflammatory mediators. Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammatory processes mediated by macrophages. Objectives: Investigate whether adenosine pretreatment modulates angiotensin II-induced MMP-9 expression and activation of signaling molecules. Methods: Human monocytic U-937 cells were treated with either adenosine or angiotensin II alone or angiotensin II following a pretreatment with adenosine. Supernatants were analyzed for MMP-9 activity by zymography method. MMP-9 gene expression was analyzed using real-time PCR. Activation of inflammatory mediators IκB-α, NF-κB, JNK, p38 MAPK, and STAT3 were analyzed by a multi-target ELISA kit. Association of Protein kinase A (PKA) in adenosine effects was studied by pre-incubation with H89, a selective PKA inhibitor. Results: Treatment of the cells with angiotensin II significantly increased MMP-9 production (p <0.05). Adenosine pretreatment did not attenuate this angiotensin II effect. Angiotensin II treatment induced NF-κB, JNK and p38 activation. Pretreatment with adenosine prior to angiotensin II stimulation showed a 40% inhibitory effect on p38 induction (p <0.05). This effect was reversed by PKA inhibition. Conclusion: The present data confirmed that monocytic MMP-9 was a target gene for angiotensin II. Adenosine pretreatment did not inhibit MMP-9 increase in response to angiotensin II. However, it showed a potential inhibitory effect on angiotensin II inflammatory signaling.


1995 ◽  
Vol 306 (3) ◽  
pp. 765-769 ◽  
Author(s):  
R Levistre ◽  
M Berguerand ◽  
G Bereziat ◽  
J Masliah

Pretreatment of alveolar macrophages with cholera toxin inhibits the release of arachidonic acid induced by the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine. The results presented here show that cholera toxin might exert its inhibitory effect through the phosphorylation of Gi alpha by protein kinase A (PKA). (1) Gi-proteins from cells pretreated with cholera toxin showed parallel increases in their sensitivity to ADP-ribosylation by toxins in vitro and in Gi alpha phosphorylation. By contrast, the Gi alpha concentration was unchanged. (2) Cholera toxin pretreatment also decreased the functional activity of Gi, as assessed by the inhibition (80%) of agonist-induced binding of guanosine-5′-[gamma-thio]triphosphate (GTP[gamma S]). (3) These effects of cholera toxin were blocked by a specific PKA inhibitor, N-(2-[methyl-amino]ethyl)-3-isoquinolinesulphonamide dihydrochloride (H8) and mimicked by a cyclic AMP (cAMP) analogue and a phosphatase inhibitor. (4) Gi alpha was also phosphorylated in vitro by the catalytic subunit of PKA. In contrast with other cell systems, the stimulation of protein kinase C seems to have no effect on the sensitivity of Gi to ADP-ribosylation or on its phosphorylation. Therefore, the phosphorylation of Gi-proteins by PKA seems to be the actual target of the negative control of arachidonic acid release via the cAMP-mediated pathway.


2004 ◽  
Vol 286 (3) ◽  
pp. E434-E438 ◽  
Author(s):  
Valérie Serazin ◽  
Marie-Noelle Dieudonné ◽  
Mireille Morot ◽  
Philippe de Mazancourt ◽  
Yves Giudicelli

The adipose renin-angiotensin system (RAS) has been assigned to participate in the control of adipose tissue development and in the pathogenesis of obesity-related hypertension. In adipose cells, the biological responses to β-adrenergic stimulation are mediated by an increase in intracellular cAMP. Because cAMP is known to promote adipogenesis and because an association exists between body fat mass, hypertension, and increased sympathetic stimulation, we examined the influence of cAMP on angiotensinogen (ATG) expression and secretion in rat adipose tissue. Exposure of primary cultured differentiated preadipocytes to the cAMP analog 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) or cAMP-stimulating agents (forskolin and IBMX) results in a significant increase in ATG mRNA levels. In adipose tissue fragments, 8-BrcAMP also increases ATG mRNA levels and protein secretion, but not in the presence of the protein kinase A inhibitor H89. The addition of isoproterenol, known to stimulate the synthesis of intracellular cAMP via β-adrenoreceptors, had the same stimulatory effect on ATG expression and secretion. These results indicate that cAMP in vitro upregulates ATG expression and secretion in rat adipose tissue via the protein kinase A-dependent pathway. Further studies are required to determine whether this regulatory pathway is activated in human obesity, where increased sympathetic tone is frequently observed, and to elucidate the importance of adipose ATG to the elevated blood pressure observed in this pathological state.


2006 ◽  
Vol 290 (2) ◽  
pp. E273-E281 ◽  
Author(s):  
Hang-Seng Liu ◽  
Yen-Hang Chen ◽  
Pei-Fang Hung ◽  
Yung-Hsi Kao

Resistin (Rstn) is known as an adipocyte-specific secretory hormone that can cause insulin resistance and decrease adipocyte differentiation. By contrast, green tea catechins, especially (−)-epigallocatechin gallate (EGCG), have been reported as body weight and diabetes chemopreventatives. Whether EGCG regulates production of Rstn is unknown. Using 3T3-L1 adipocytes, we found that EGCG at 20 and 100 μM suppressed Rstn mRNA levels by ∼35 and 50%, respectively, after 3 h. The basal half-life of Rstn mRNA induced by actinomycin D was >12 h but shifted to 3 h in the presence of EGCG. This suggests that EGCG regulates the stability of Rstn mRNA. Treatment with cycloheximide did not prevent EGCG-suppressed Rstn mRNA levels, which suggests that the effect of EGCG does not require new protein synthesis. Intracellular Rstn protein significantly decreased in the presence of 100 μM EGCG 3 h after treatment, whereas the release of the Rstn protein did not significantly change. This suggests that EGCG may modulate the distribution of Rstn protein between the intracellular and extracellular compartments. EGCG did not affect the amounts of extracellular signal-related kinase-1/2 (ERK1/2), phospho-JNK, phospho-p38, and phospho-Akt proteins but reduced the amounts of phospho-ERK1/2 proteins. Overexpression with MEK1 blocked EGCG-inhibited Rstn mRNA expression. These data suggest that EGCG downregulates Rstn expression via a pathway that is dependent on the ERK pathway.


2005 ◽  
Vol 30 (8) ◽  
pp. 1548-1556 ◽  
Author(s):  
Ghanshyam N Pandey ◽  
Yogesh Dwivedi ◽  
Xinguo Ren ◽  
Hooriyah S Rizavi ◽  
Amal C Mondal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document