scholarly journals Saccharomyces cerevisiae Env7 Is a Novel Serine/Threonine Kinase 16-Related Protein Kinase and Negatively Regulates Organelle Fusion at the Lysosomal Vacuole

2012 ◽  
Vol 33 (3) ◽  
pp. 526-542 ◽  
Author(s):  
Surya P. Manandhar ◽  
Florante Ricarte ◽  
Stephanie M. Cocca ◽  
Editte Gharakhanian

ABSTRACTMembrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15.In vitrokinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome systemin vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established thatenv7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds.ENV7function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, andENV7is not a suppressor ofyck3Δ. Bayesian phylogenetic analyses strongly supportENV7as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system.

2004 ◽  
Vol 377 (2) ◽  
pp. 395-405 ◽  
Author(s):  
Raffaele LOPREIATO ◽  
Sonia FACCHIN ◽  
Geppo SARTORI ◽  
Giorgio ARRIGONI ◽  
Stefano CASONATO ◽  
...  

The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea–Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.


2002 ◽  
Vol 156 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Andrea R. Castillo ◽  
Janet B. Meehl ◽  
Garry Morgan ◽  
Amy Schutz-Geschwender ◽  
Mark Winey

Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1–8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.


2020 ◽  
Vol 295 (34) ◽  
pp. 12262-12278
Author(s):  
Surya P. Manandhar ◽  
Ikha M. Siddiqah ◽  
Stephanie M. Cocca ◽  
Editte Gharakhanian

Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3–Env7 kinase cascade.


2018 ◽  
Vol 293 (41) ◽  
pp. 15801-15814 ◽  
Author(s):  
Wen-Min Su ◽  
Gil-Soo Han ◽  
Prabuddha Dey ◽  
George M. Carman

The Nem1–Spo7 protein phosphatase plays a role in lipid synthesis by controlling the membrane localization of Pah1, the diacylglycerol-producing phosphatidate (PA) phosphatase that is crucial for the synthesis of triacylglycerol in the yeast Saccharomyces cerevisiae. By dephosphorylating Pah1, Nem1–Spo7 facilitates its translocation to the nuclear/endoplasmic reticulum membrane for catalytic activity. Like its substrate Pah1, Nem1–Spo7 is phosphorylated in the cell, but the specific protein kinases involved remain to be identified. In this study, we demonstrate that the Nem1–Spo7 complex is phosphorylated by protein kinase A (PKA), which is associated with active cell growth, metabolic activity, and membrane phospholipid synthesis. In vitro phosphorylation of purified Nem1–Spo7 and of their synthetic peptides revealed that both subunits of the phosphatase complex are PKA substrates. Using phosphoamino acid and phosphopeptide-mapping analyses coupled with site-directed mutagenesis, we identified Ser-140 and Ser-210 of Nem1 and Ser-28 of Spo7 as PKA-targeted phosphorylation sites. Immunodetection of the phosphatase complex from the cell with anti-PKA substrate antibody confirmed the in vivo phosphorylations of Nem1 and Spo7 on the serine residues. Lipid-labeling analysis of cells bearing phosphorylation-deficient alleles of NEM1 and SPO7 indicated that the PKA phosphorylation of the phosphatase complex stimulates phospholipid synthesis and attenuates the synthesis of triacylglycerol. This work advances the understanding of how PKA-mediated posttranslational modifications of Nem1 and Spo7 regulate lipid synthesis in yeast.


2016 ◽  
Vol 27 (24) ◽  
pp. 3841-3854 ◽  
Author(s):  
Felicitas Rataj ◽  
Séverine Planel ◽  
Agnès Desroches-Castan ◽  
Juliette Le Douce ◽  
Khadija Lamribet ◽  
...  

TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3′-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein–protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.


1999 ◽  
Vol 337 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Senena CORBALÁN-GARCÍA ◽  
José A. RODRÍGUEZ-ALFARO ◽  
Juan C. GÓMEZ-FERNÁNDEZ

The C2 domain is a conserved protein module present in various signal-transducing proteins. To investigate the function of the C2 domain of protein kinase Cα (PKCα), we have generated a recombinant glutathione S-transferase-fused C2 domain from rat PKCα, PKC-C2. We found that PKC-C2 binds with high affinity (half-maximal binding at 0.6 µM) to lipid vesicles containing the negatively charged phospholipid phosphatidylserine. When expressed into COS and HeLa cells, most of the PKC-C2 was found at the plasma membrane, whereas when the cells were depleted of Ca2+ by incubation with EGTA and ionophore, the C2 domain was localized preferentially in the cytosol. Ca2+ titration was performed in vivo and the critical Ca2+ concentration ranged from 0.1 to 0.32 µM. We also identified, by site-directed mutagenesis, three aspartic residues critical for that Ca2+ interaction, namely Asp-187, Asp-246 and Asp-248. Mutation of these residues to asparagine, to abolish their negative charge, resulted in a domain expressed as the same extension as wild-type protein that could interact in vitro with neither Ca2+ nor phosphatidylserine. Overexpression of these mutants into COS and HeLa cells also showed that they cannot localize at the plasma membrane, as demonstrated by immunofluorescence staining and subcellular fractionation. These results suggest that the Ca2+-binding site might be involved in promoting the interaction of the C2 domain of PKCα with the plasma membrane in vivo.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


Author(s):  
Jianghao Wu ◽  
Liwei Rong ◽  
Weijun Lin ◽  
Lingxi Kong ◽  
Dengjie Wei ◽  
...  

Abstract In response to changing light quantity and quality, photosynthetic organisms perform state transitions, a process which optimizes photosynthetic yield and mitigates photo-damage. The serine/threonine-protein kinase STN7 phosphorylates the light-harvesting complex of photosystem II (PSII; light-harvesting complex II), which then migrates from PSII to photosystem I (PSI), thereby rebalancing the light excitation energy between the photosystems and restoring the redox poise of the photosynthetic electron transport chain. Two conserved cysteines forming intra- or intermolecular disulfide bonds in the lumenal domain (LD) of STN7 are essential for the kinase activity although it is still unknown how activation of the kinase is regulated. In this study, we show lumen thiol oxidoreductase 1 (LTO1) is co-expressed with STN7 in Arabidopsis (Arabidopsis thaliana) and interacts with the LD of STN7 in vitro and in vivo. LTO1 contains thioredoxin (TRX)-like and vitamin K epoxide reductase domains which are related to the disulfide-bond formation system in bacteria. We further show that the TRX-like domain of LTO1 is able to oxidize the conserved lumenal cysteines of STN7 in vitro. In addition, loss of LTO1 affects the kinase activity of STN7 in Arabidopsis. Based on these results, we propose that LTO1 helps to maintain STN7 in an oxidized active state in state 2 through redox interactions between the lumenal cysteines of STN7 and LTO1.


Sign in / Sign up

Export Citation Format

Share Document