scholarly journals ETO, but Not Leukemogenic Fusion Protein AML1/ETO, Augments RBP-Jκ/SHARP-Mediated Repression of Notch Target Genes

2008 ◽  
Vol 28 (10) ◽  
pp. 3502-3512 ◽  
Author(s):  
Daniela Salat ◽  
Robert Liefke ◽  
Jörg Wiedenmann ◽  
Tilman Borggrefe ◽  
Franz Oswald

ABSTRACT Notch is a transmembrane receptor that determines cell fates and pattern formation in all animal species. After specific ligand binding, the intracellular part of Notch is cleaved off and translocates to the nucleus, where it targets the DNA binding protein RBP-Jκ. In the absence of Notch, RBP-Jκ represses Notch target genes by recruiting a corepressor complex. We and others have previously identified SHARP as one component of this complex. Here, we show that the corepressor ETO as well as the leukemogenic fusion protein AML1/ETO directly interacts with SHARP, that ETO is part of the endogenous RBP-Jκ-containing corepressor complex, and that ETO is found at Notch target gene promoters. In functional assays, corepressor ETO, but not AML1/ETO, augments SHARP-mediated repression in an histone deacetylase-dependent manner. Furthermore, either the knockdown of ETO or the overexpression of AML1/ETO activates Notch target genes. Therefore, we propose that AML1/ETO can disturb the normal, repressive function of ETO at Notch target genes. This activating (or derepressing) effect of AML1/ETO may contribute to its oncogenic potential in myeloid leukemia.

2005 ◽  
Vol 25 (23) ◽  
pp. 10379-10390 ◽  
Author(s):  
Franz Oswald ◽  
Michael Winkler ◽  
Ying Cao ◽  
Kathy Astrahantseff ◽  
Soizic Bourteele ◽  
...  

ABSTRACT Notch is a transmembrane receptor that determines cell fates and pattern formation in all animal species. After ligand binding, proteolytic cleavage steps occur and the intracellular part of Notch translocates to the nucleus, where it targets the DNA-binding protein RBP-Jκ/CBF1. In the absence of Notch, RBP-Jκ represses Notch target genes through the recruitment of a corepressor complex. We and others have identified SHARP as a component of this complex. Here, we functionally demonstrate that the SHARP repression domain is necessary and sufficient to repress transcription and that the absence of this domain causes a dominant negative Notch-like phenotype. We identify the CtIP and CtBP corepressors as novel components of the human RBP-Jκ/SHARP-corepressor complex and show that CtIP binds directly to the SHARP repression domain. Functionally, CtIP and CtBP augment SHARP-mediated repression. Transcriptional repression of the Notch target gene Hey1 is abolished in CtBP-deficient cells or after the functional knockout of CtBP. Furthermore, the endogenous Hey1 promoter is derepressed in CtBP-deficient cells. We propose that a corepressor complex containing CtIP/CtBP facilitates RBP-Jκ/SHARP-mediated repression of Notch target genes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5132-5132
Author(s):  
Wenbin Gu ◽  
Meng Li ◽  
Liang Liang ◽  
Jian Zhang ◽  
Chongye Guo ◽  
...  

Abstract The t(8;21) chromosome translocation frequently occurs in acute myeloid leukemia (AML), resulting in an in-frame fusion between the DNA-binding domain of AML1 and almost the entire of ETO gene. The fusion AML1-ETO protein is thought to play a critical role in the abnormal proliferation and differentiation of myeloid leukemia cells, such as Kasumi-1 and SKNO-1 cells. Glucocorticoids (GC) can induce apoptosis in these cells at low concentrations, whereas most other myeloid leukemia cell lines are resistant to glucocorticoid-induced apoptosis. To experimentally address possible sensitive mechanisms in leukemia cells with AML1-ETO translocation, we generated aGC-resistant Kasumi-1 cell line by induction of 10-6 M dexamethasone (Dex) for three weeks. The IC50 of Dex to cells is increased from 2.5×10-8 M for original GC-sensitive Kasumi-1 cell line ( K-S cell line) to more than 1×10-5 M for induced GC-resistant Kasumi-1 cell line (K-R cell line). Since GC resistance often results from mutations in the glucocorticoid receptor (GR), all the exons of GR gene were sequenced and no mutation was found in K-R cells. Comparing to those in K-S cells, the GR protein level didn't decrease in K-R cells after 2h, 4h, 8h, 12h and 24h exposure to dexamethasone. Given that the difference of direct GR downstream genes between K-S and K-R cells may play a key role in the GC sensitivity, we systematically analyzed the changes of gene expression induced by Dex versus ethanol vehicle for 8h in K-S and K-R cells by high throughput RNA sequencing. The time point of 8h was selected according to the expression peaks of several foregone GR target genes after Dex induction. There were found 32 genes conversely regulated in K-S and K-R cells, including 14 mRNAs and 18 long non-coding RNAs. Pathway analysis indicated that the upregulated genes in K-S cells might promote the AML1-ETO fusion protein degradation by proteasomes, while the component genes of this pathway were downregulated in K-R cells. Further validation and function studies of these mRNAs and long non-coding RNAs are ongoing. Our data suggested that the downstream targets of GR among GC-sensitive and -resistant Kasumi-1 cells were significant different and they may contribute to the GC sensitivity and resistance by degradation or reservation of AML-ETO fusion protein and the regulation of apoptosis in t(8;21) leukemia cell subtype. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7030-7030 ◽  
Author(s):  
Olatoyosi Odenike ◽  
Johannes E. Wolff ◽  
Gautam Borthakur ◽  
Ibrahim Taha Aldoss ◽  
David Rizzieri ◽  
...  

7030 Background: Bromodomain and extra-terminal (BET) proteins bind to acetyllysines and upregulate oncogenic target genes. Mivebresib (ABBV-075) is a pan-BET inhibitor with antitumor activity in vitro and xenograft models of AML. This 2-part phase 1 study evaluates the safety and pharmacokinetics of mivebresib at monotherapy or combination dosing schedules in patients with solid tumors (part 1) and acute myeloid leukemia (AML; part 2) (NCT02391480). Here, we report preliminary data from part 2 in patients with relapsed/refractory (RR) AML. Methods: Mivebresib monotherapy (MIV-mono), or combined with venetoclax (MIV-VEN), were administered daily to adult patients with AML. The dose-limiting toxicity (DLT) period was 28 d. Results: As of Dec 2018, 41 patients (median age: 69 y [range, 29–84]; 19 patients had > 2 prior therapies) were enrolled: 19 in MIV-mono (5 of whom switched to MIV-combo) and 22 who began treatment in MIV-VEN cohorts. 23 patients had high cytogenetic risk. Median time on treatment was 28 d (range, 8–562). There were no DLTs. All patients experienced a treatment-emergent adverse event (AE), most commonly (≥40% patient incidence), fatigue (56%), dysgeusia (46%), decreased appetite (44%), diarrhoea (42%), nausea (42%), vomiting (42%). 40 patients had grade ≥3 AEs (febrile neutropenia (37%), anemia (34%) and thrombocytopenia (32%). 33 patients had serious AEs, most commonly febrile neutropenia (19%). 25 deaths were reported; 15 patients died of causes unrelated to mivebresib and 10 patients due to AML progression. The median best % bone marrow blast change for 26 evaluable patients was -20% (range, -98% to +300%). Gene expression analysis in pre- and post-treatment peripheral blood samples showed that HEXIM1, DCXR and CD93 genes were reliable PD biomarkers of ABBV-075 which were consistently modulated in a dose-dependent manner. At the cutoff date, median overall survival for all patients was 2.6 m. Conclusions: Mivebresib was well tolerated and showed antileukemic effects in patients with RR AML. Clinical trial information: NCT02391480.


Oncogene ◽  
2003 ◽  
Vol 22 (36) ◽  
pp. 5646-5657 ◽  
Author(s):  
Annika Elsässer ◽  
Michael Franzen ◽  
Alexander Kohlmann ◽  
Martin Weisser ◽  
Susanne Schnittger ◽  
...  

2010 ◽  
Vol 30 (19) ◽  
pp. 4575-4594 ◽  
Author(s):  
Weiqi Huang ◽  
Wei Zhou ◽  
Gurveen Saberwal ◽  
Iwona Konieczna ◽  
Elizabeth Horvath ◽  
...  

ABSTRACT The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor, also referred to as IRF8. ICSBP acts as a suppressor of myeloid leukemia, although few target genes explaining this effect have been identified. In the current studies, we identified the gene encoding growth arrest specific 2 (GAS2) as an ICSBP target gene relevant to leukemia suppression. We find that ICSBP, Tel, and histone deacetylase 3 (HDAC3) bind to a cis element in the GAS2 promoter and repress transcription in myeloid progenitor cells. Gas2 inhibits calpain protease activity, and β-catenin is a calpain substrate in these cells. Consistent with this, ICSBP decreases β-catenin protein and activity in a Gas2- and calpain-dependent manner. Conversely, decreased ICSBP expression increases β-catenin protein and activity by the same mechanism. This is of interest, because decreased ICSBP expression and increased β-catenin activity are associated with poor prognosis and blast crisis in chronic myeloid leukemia (CML). We find that the expression of Bcr/abl (the CML oncoprotein) increases Gas2 expression in an ICSBP-dependent manner. This results in decreased calpain activity and a consequent increase in β-catenin activity in Bcr/abl-positive (Bcr/abl+) cells. Therefore, these studies have identified a Gas2/calpain-dependent mechanism by which ICSBP influences β-catenin activity in myeloid leukemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 286-286 ◽  
Author(s):  
John H. Bushweller ◽  
Anuradha Illendula ◽  
John Anto Pulikkan ◽  
Jolanta Grembecka ◽  
Paul Bradley ◽  
...  

Abstract Abstract 286 Emerging literature suggests that inability to cure cancers with current therapies may be attributed to a population of so-called cancer stem cells or cancer initiating cells that have long term self-renewal potential and can fully recapitulate tumor phenotype at time of relapse. The use of targeted therapies that inhibit the activity of oncoproteins directly present the potential for specificity in ablating tumor cells, including cancer stem cells, while having minimal impact on normal tissues. The gene encoding CBFβ (CBFB) is disrupted by the chromosome 16 inversion [inv(16)(p13q22)], associated with ∼12% of acute myeloid leukemia (AML) in humans, resulting in a fusion protein containing most of CBFβ fused to the coiled-coil tail region of smooth muscle myosin heavy chain (SMMHC). The CBFβ-SMMHC fusion protein acts as a dominant repressor of CBF function, binding RUNX1 and dysregulating the expression of multiple target genes required for normal hematopoiesis. Current AML treatment utilizing cytotoxic chemotherapy results in 45–65% five year overall survival but only 20% for patients older than 60. These data clearly indicate that the development of targeted therapy that can improve the therapeutic response for inv(16) AML patients is essential. The targeting of transcription factors in cancer therapy is a relatively new approach with tremendous potential. We developed a small molecule inhibitor, AI-10-49, that binds to the aberrant transcription factor CBFβ-SMMHC and disrupts its interaction with RUNX proteins. We have taken advantage of the oligomeric nature of CBFβ-SMMHC by developing dimeric compounds to achieve selectivity toward the fusion protein. Optimization of the linker length in these dimeric compounds shows a clear linker length dependence and a dramatic enhancement in activity for the dimeric versus monomeric inhibitors, providing validation for this approach. AI-10-49 is a result of this optimization and modifications to improve pharmacokinetic properties, resulting in a potent inhibitor with a half-life of ∼3 hours in mice. This compound displays selective toxicity to human leukemia cell lines with the inv(16) at a submicromolar dose (IC50=0.4μM). We have also shown no effect on growth of normal mouse or human bone marrow mononuclear cells. Using RT-PCR, we have shown dramatic derepression of the well-validated target genes CSF1R (9-fold) and RUNX3 (18-fold) in ME-1 (inv(16)) cells and little to no effect in Kasumi-1 (t(8;21)) and U937 cells. We have also shown increased apoptosis of the mouse preleukemic myeloid progenitor cells expressing CBFβ-SMMHC upon treatment ex vivo. The toxicity of AI-10-49 was tested in mice at the 25 mg/kg dosage employed for efficacy studies. Mice were dosed twice a day at 12 hour intervals for 1 week. No change in counts of white blood cells, red blood cells, or platelets was observed compared to formulation control. No changes were observed in granulocytes, monocytes, T cell, and B cell frequency by flow cytometry. Analysis of tissues after treatment showed no defects in spleen, kidney, liver, lungs, GI tract, heart, and bone marrow. A maximum tolerated dose (MTD) study showed no toxicity at doses up to 500 mg/kg, indicating the compound is very well tolerated. The efficacy of AI-10-49 was tested in vivo using the Cbfb+/MYH11/Mx1Cre/NrasG12D mouse model of inv(16) AML. Mice were transplanted with 5×105 leukemic cells, allowed 5 days for engraftment, and treated between days 5 and 15 post transplantation with 2 doses of vehicle or of AI-10-49 per day (25mg/kg/day). The control group (n=4) developed leukemia with a median latency of 4.6 weeks and full penetrance, while the test group (n=4) developed leukemia with a median latency of 8.4 weeks and incomplete penetrance. One mouse (25%) from the test group showed progressive decrease of leukemic cells to background levels at week 12 in peripheral blood, and remains healthy with no evidence of disease to date (week 16). Current efforts are focused on testing the compound efficacy of AI-10-49 with first line therapy drug Ara-C in mice. This work presents strong evidence of the identification of a small molecule that specifically targets CBFβ-SMMHC function and ablates cells expressing the leukemia fusion protein in vitro and in mice. This study provides proof of principle that oncogenic transcription factors can be targeted and may have significant impact on the treatment of inv(16) acute myeloid leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3497-3497
Author(s):  
Elizabeth Hjort ◽  
Weiqi Huang ◽  
Elizabeth A. Eklund

Abstract Abstract 3497 The interferon consensus sequence binding protein is a member of the interferon regulatory factor family of transcription factors (referred to as Icsbp or Irf8). The first described functions for Icsbp involved regulation of phagocyte and B-cell effector genes, including genes encoding components of the phagocyte NADPH-oxidase, Toll-like receptors and interleukin receptors. However, subsequent studies in murine models and human disease indicated that Icsbp also functions as a myeloid leukemia suppressor. For example, decreased Icsbp expression is found in chronic myeloid leukemia (CML) in association with uncontrolled disease, drug resistance and progression to blast crisis (BC). Decreased Icsbp expression is also found in the bone marrow of subjects with some subtypes of acute myeloid leukemia (AML). Consistent with this clinical correlative data, IRF8−/− mice exhibit a myeloproliferative neoplasm that is similar to CML and progresses to BC over time. However, the mechanism for decreased Icsbp expression in leukemia is not known, although preliminary studies indicate that DNA-methylation of the IRF8 locus is not altered. Therefore, in these studies, we investigate the effects of Bcr-abl on IRF8 transcription. This is clinically relevant, because previous studies in our laboratory identified a set of Icsbp-target-genes that contribute to the pathogenesis of CML. We find that Bcr-abl decreases expression of Icsbp mRNA and protein in a kinase dependent manner. Since it is unlikely that Bcr-abl directly binds to the promoter to regulate gene transcription, we hypothesized that Bcr-abl regulates IRF8 through an intermediary transcription factor. In this study, we determine that Stat5 negatively regulates IRF8 transcription through a proximal promoter cis-element. We also find that Stat5 repression activity is necessary for Bcr-abl dependent regulation of IRF8. Bcr-abl is known to phosphorylate and activate Stat5 in CML. In our studies, we find that Stat5 protein (but not mRNA) is also increased in Bcr-abl+ cells. Stat5 is a known substrate for calpain; a serine protease. We previously demonstrated that Icsbp regulates calpain protease activity through repression of the gene encoding Gas2; an endogenous calpain inhibitor. Consistent with this, our current studies demonstrate that Stat5 protein stability is increased in Bcr-abl+ cells in an Icsbp/Gas2/calpain-dependent manner. These results identify novel mechanisms by which Bcr-abl-kinase activity controls a positive feedback loop that leads to decreased Icsbp expression and stabilization of Stat5 protein. These studies suggest that targeting Gas2/calpain might be a novel therapeutic approach to CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4322-4322
Author(s):  
Nan Zhang ◽  
Jianchuan Deng ◽  
Fuling Zhou

Abstract Background: N6-methyladenosine (m6A) is the most common post-transcriptional modification of eukaryotic mRNA. Recent evidence suggests that dysregulated m6A-associated proteins and m6A modifications play a pivotal role in the initiation and progression of diseases such as cancer. Here, we identified that IGF2BP3 is specifically overexpressed in acute myeloid leukemia (AML), which constitutes a subtype of this malignancy associated with poor prognosis and high genetic risk. Methods: Bioinformatics analysis of public databases was performed to screen the differentially expressed m6A regulators in AML. Clinical samples were collected to detect the expression of IGF2BP3 in AML by RT-qPCR. The effects of IGF2BP3 on the proliferation, apoptosis and cycle of AML cells were detected by CCK-8 and flow cytometry. RNA-seq was used to identify target genes of IGF2BP3 by integrating analysis with RIP-Seq, iCLIP-Seq and MeRIP-Seq data sets. Results:High expression of IGF2BP3 is closely associated with poor prognosis of AML and is higher in patients with high genetic risk group. IGF2BP3 was the lowest expressed in AML-M3 and the highest expressed in RUNX1 mutant type. IGF2BP3 is required for maintaining AML cell survival in an m6A-dependent manner, and knockdown of IGF2BP3 suppressed dramatically induces apoptosis, reduces proliferation and impaired leukemic capacity AML cells in vitro and in vivo. Mechanistically, IGF2BP3 interacts with RCC2 mRNA and stabilizes the expression of m6A-tagged RNA. Conclusions:We provided compelling evidence to demonstrate that m6A reader IGF2BP3 contributed to tumorigenesis and poor prognosis of AML, which can serve as a target to develop therapeutics for cancer treatment. Disclosures No relevant conflicts of interest to declare. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Melody Esmaeili ◽  
Shelby A. Blythe ◽  
John W. Tobias ◽  
Kai Zhang ◽  
Jing Yang ◽  
...  

AbstractAs development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2690-2690
Author(s):  
Lisa Richter ◽  
Yiqian Wang ◽  
Michelle Becker ◽  
R. Katherine Hyde

Abstract The fusion of the genes for core binding factor beta and smooth muscle myosin heavy chain (CBFB-MYH11) is the recurrent mutation found in inversion 16 (inv(16)) acute myeloid leukemia (AML). The expressed fusion protein, CBFβ-SMMHC, binds to the transcriptional regulator RUNX1, and this interaction is required for leukemogenesis. Recent data shows CBFβ-SMMHC and RUNX1 are associated with promoters of both transcribed and repressed genes, implying that the CBFβ-SMMHC:RUNX1 complex directly regulates target gene expression. However, it is not known whether other transcriptional co-factors are also required for this activity. Histone deacetylase 1 (HDAC1) removes acetyl groups from histone tails to regulate the accessibility of chromatin to transcriptional machinery. It is recruited to chromatin by transcription factors, including RUNX1. HDAC1 also colocalizes with RUNX1 and CBFβ-SMMHC to promoter regions in ME-1 cells, a human inv(16) cell line. Based on this, we hypothesized that HDAC1 could bind to the RUNX1: CBFβ-SMMHC complex and plays a role in transcriptional regulation in inv(16). To test if CBFβ-SMMHC and HDAC1 form a complex, we transfected COS-7 cells with expression plasmids for HDAC1-FLAG and CBFβ-SMMHC and performed immunoprecipitations (IP) with nuclear extracts. IP with anti-MYH11 showed an interaction between HDAC1 and CBFβ-SMMHC, as did IP with anti-FLAG. Importantly, we found that HDAC1 and CBFβ-SMMHC co-immunoprecipitate in mouse leukemia cells from our knockin model which expresses CBFβ-SMMHC from the endogenous CBFβ promoter (CBFβ-SMMHC+). Confirming the specificity of this interaction, we found that IP with anti-MYH11 in ME-1 cells shows HDAC1 interaction, but the same IP in the t(8;21) AML cell line Kasumi-1 did not show HDAC1 interaction even though similar levels of HDAC1 are expressed. We next tested whether RUNX1 mediates the interaction between CBFβ-SMMHC and HDAC1. We performed IP experiments using a CBFβ-SMMHC mutant lacking RUNX1 binding (CBFβ-SMMHCN63K,N104K,Δ179-221). This mutant was co-immunoprecipitated with HDAC1, but not RUNX1, indicating that CBFβ-SMMHC's interaction with HDAC1 does not require RUNX1. We tested a construct lacking the c-terminal 95 amino acids, CBFβ-SMMHCΔC95, the domain known to interact with the related protein, HDAC8. We found that HDAC1 immunoprecipitated with CBFβ-SMMHCΔC95, suggesting that HDAC1 binds to a unique region of CBFβ-SMMHC. To test if HDAC1 plays a role in CBFβ-SMMHC-mediated gene expression, we performed chromatin immunoprecipitations on mouse CBFβ-SMMHC+ primary leukemia cells with antibodies against HDAC1, RUNX1, and MYH11, followed by real-time PCR for the promoter regions of three CBFβ-SMMHC target genes: MPO, CSF1R, and CEBPD. We observed all three proteins enriched on the target gene promoters as compared to immunoglobulin controls. This indicates that HDAC1 localizes with CBFβ-SMMHC and RUNX1 on target gene promoters in mouse primary leukemia cells. To test if HDAC1 is required for expression of these target genes, we used shRNA to knockdown Hdac1 expression. Mouse CBFβ-SMMHC+ leukemia cells were transduced with one of 2 different shRNAs against Hdac1 or with a control construct. We found that expression of all three genes was decreased with Hdac1knockdown, implying that HDAC1 is required for CBFβ-SMMHC induced changes in gene expression. These results also suggest that HDAC1 may have a role in transcriptional activation for certain genes, which is in contrast to its traditional role as a transcriptional repressor. These findings imply that HDAC1 activity is required for the maintenance of CBFβ-SMMHC expressing leukemia cells, and that HDAC1 inhibitors may be effective against inv(16) AML. To test this possibility we performed colony-forming assays using mouse leukemia cells grown in the presence of two different HDAC inhibitors, entinostat which is specific for HDAC1, and vorinostat, a nonspecific HDAC inhibitor. Our preliminary results indicate that both entinostat and vorinostat reduce the ability of primary CBFβ-SMMHC+ mouse leukemia cells to form colonies as compared to the vehicle control, while having minimal effects on growth of normal hematopoietic cells. In summary, we demonstrated that HDAC1 forms a complex with CBFβ-SMMHC and is required for its regulation of target gene expression, and that HDAC inhibitors may be effective for the treatment of inv(16) AML patients. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document