Interleukin-1-mediated enhancement of mouse factor B gene expression via NF kappa B-like hepatoma nuclear factor

1990 ◽  
Vol 10 (12) ◽  
pp. 6283-6289
Author(s):  
M Nonaka ◽  
Z M Huang

Complement factor B, a serine protease playing a pivotal role in alternative pathway activation, is an acute-phase plasma protein. Previous studies have revealed that interleukin-1 (IL-1) mediates, at least in part, the acute-phase induction of factor B expression and that the IL-1-responsive element resides in the region between -553 and -478 relative to the transcription initiation site of the mouse factor B gene. In this paper, we demonstrate a specific binding site for a nuclear factor of human hepatoma HepG2 cells in this region of the factor B gene, using gel shift and methylation interference analysis. The nucleotide sequence of the binding site is closely similar to the NF kappa B or H2TF1 binding motif. The binding activity of HepG2 showed very similar specificity to that of NF kappa B or H2TF1, as shown by a competition binding assay, and was induced by IL-1 alpha treatment. A synthetic oligonucleotide corresponding to this binding site, as well as a similar sequence found in another class III complement C4 gene, conferred IL-1 responsiveness on the minimal factor B promoter. In contrast, a mutated oligonucleotide that could not bind to the HepG2 nuclear factor did not confer IL-1 responsiveness. These results suggest that IL-1 induces factor B expression via NF kappa B or a closely related factor in hepatocyte nuclei.

1990 ◽  
Vol 10 (12) ◽  
pp. 6283-6289 ◽  
Author(s):  
M Nonaka ◽  
Z M Huang

Complement factor B, a serine protease playing a pivotal role in alternative pathway activation, is an acute-phase plasma protein. Previous studies have revealed that interleukin-1 (IL-1) mediates, at least in part, the acute-phase induction of factor B expression and that the IL-1-responsive element resides in the region between -553 and -478 relative to the transcription initiation site of the mouse factor B gene. In this paper, we demonstrate a specific binding site for a nuclear factor of human hepatoma HepG2 cells in this region of the factor B gene, using gel shift and methylation interference analysis. The nucleotide sequence of the binding site is closely similar to the NF kappa B or H2TF1 binding motif. The binding activity of HepG2 showed very similar specificity to that of NF kappa B or H2TF1, as shown by a competition binding assay, and was induced by IL-1 alpha treatment. A synthetic oligonucleotide corresponding to this binding site, as well as a similar sequence found in another class III complement C4 gene, conferred IL-1 responsiveness on the minimal factor B promoter. In contrast, a mutated oligonucleotide that could not bind to the HepG2 nuclear factor did not confer IL-1 responsiveness. These results suggest that IL-1 induces factor B expression via NF kappa B or a closely related factor in hepatocyte nuclei.


1985 ◽  
Vol 162 (3) ◽  
pp. 930-942 ◽  
Author(s):  
G Ramadori ◽  
J D Sipe ◽  
C A Dinarello ◽  
S B Mizel ◽  
H R Colten

During the acute phase response to tissue injury or inflammation, the concentration of several plasma proteins change. Previous work (29-34) suggested a role for interleukin 1 (IL-1) in the acute phase response. The availability of recombinant-generated mouse IL-1 prompted a study designed to directly test the function of IL-1 and its mechanism of action on hepatic synthesis of two positive acute phase proteins (serum amyloid A [SAA] and complement factor B), and a negative acute phase reactant (albumin). Intravenous injection of purified recombinant-generated murine-IL-1 into C3H/HeJ endotoxin-resistant mice induced a dose-dependent increase in SAA-specific hepatic messenger RNA (mRNA), and an increase in SAA plasma protein concentration. In primary murine hepatocyte cultures, both the recombinant IL-1 and highly purified human IL-1 induced a dose- and time-dependent, reversible increase in expression of the SAA and factor B genes, and a decrease in albumin gene expression. This regulation is pretranslational, since the kinetics and direction of change in specific mRNA for SAA, factor B, and albumin correspond to the changes in synthesis of the respective proteins. Moreover, the effect of IL-1 was specific, since actin gene expression was unaffected, and the IL-1 response was inhibited by antibody specific for IL-1. These data provide direct evidence that a single mediator, IL-1, can effect the positive and negative changes in specific hepatic gene expression characteristic of the acute phase response.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 632
Author(s):  
Stephanie B. Wall ◽  
Rui Li ◽  
Brittany Butler ◽  
Ashley R. Burg ◽  
Hubert M. Tse ◽  
...  

Background: Alveolar macrophages (AMs) are resident inflammatory cells in the lung that serve as early sentinels of infection or injury. We have identified thioredoxin reductase 1 inhibition by gold compounds increases activation of nuclear factor erythroid 2-related factor 2 (NRF2)-dependent pathways to attenuate inflammatory responses. The present studies utilized murine alveolar macrophages (MH-S) to test the hypothesis that the gold compound, auranofin (AFN), decreases interleukin (IL)-1β expression through NRF2-mediated interactions with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway genes and/or increases in glutathione synthesis. Methods: MH-S cells were treated with AFN and lipopolysaccharide (LPS) and analyzed at 6 and 24 h. The Il1b promoter was analyzed by chromatin immunoprecipitation for direct interaction with NRF2. Results: Expression of IL-1β, p-IκBα, p-p65 NF-kB, and NOD-, LRR-, and pyrin domain-containing protein 3 were elevated by LPS exposure, but only IL-1β expression was suppressed by AFN treatment. Both AFN and LPS treatments increased cellular glutathione levels, but attenuation of glutathione synthesis by buthionine sulfoximine (BSO) did not alter expression of Il-1β. Analysis revealed direct NRF2 binding to the Il1b promoter which was enhanced by AFN and inhibited the transcriptional activity of DNA polymerase II. Conclusions: Our data demonstrate that AFN-induced NRF2 activation directly suppresses IL-1β synthesis independent of NFκB and glutathione-mediated antioxidant mechanisms. NRF2 binding to the promoter region of IL1β directly inhibits transcription of the IL1β gene. Collectively, our research suggests that gold compounds elicit NRF2-dependent pulmonary protection by suppressing macrophage-mediated inflammation.


1993 ◽  
Vol 13 (2) ◽  
pp. 1183-1193
Author(s):  
J Dalmon ◽  
M Laurent ◽  
G Courtois

Acute-phase reactants are liver proteins whose synthesis is positively or negatively regulated during inflammation. The main mediators of this phenomenon are glucocorticoids and interleukin-6 (IL-6), a pleiotropic cytokine that also controls hematopoiesis. Functional analysis of several acute-phase reactant promoter regions has identified two major DNA motifs used by IL-6-regulated genes. The first one corresponds to a CTGG(G/A)AA sequence, and the other is a binding site for members of the C/EBP family of nuclear proteins. We have previously shown that the human beta fibrinogen (beta Fg) promoter contains an IL-6-responsive region, located between bp -150 and -67 (P. Huber, M. Laurent, and J. Dalmon, J. Biol. Chem. 265:5695-5701, 1990). In this study, using DNase I footprinting, mobility shift assays, and mutagenesis, we demonstrate that at least three subdomains of this region are necessary to observe a full response to IL-6. The most distal contains a CTGGGAA motif, and its mutation inhibits IL-6 stimulation. Another, which is able to interact with several distinct nuclear proteins, among them members of the C/EBP family, is dispensable for IL-6 induction but plays an important role in the constitutive expression of beta Fg. Finally, a proximal hepatocyte nuclear factor 1 binding site, already described as the major determinant of beta Fg tissue-specific expression, is also required for IL-6 stimulation. These results indicate a complex interplay between nuclear proteins within the beta Fg IL-6-responsive region and suggest a tight functional coupling between the tissue-specific and inducible elements.


1978 ◽  
Vol 171 (1) ◽  
pp. 99-107 ◽  
Author(s):  
M A Kerr ◽  
R R Porter

The second component of human complement (C2) was purified by a combination of euglobulin precipitation, ion-exchange chromatography, (NH4)2SO4 precipitation and affinity chromatography. The final product was homogeneous by the criterion of polyacrylamide-gel electrophoresis and represents a purification of about 4000-fold from serum with 15-20% yield. Component C2 comprises a single carbohydrate-containing polypeptide chain, with an apparent mol.wt. of 102000; alanine is the N-terminal amino acid. The molecule is rapidly cleaved by activated subcomponent C1s with the loss of haemolytic activity to yield two fragments with apparent mol.wts. of 74000 and 34000. These fragments are not linked by disulphide bonds and can be easily separated. A second protein isolated during the purification of component C2 was identified by its haemolytic and antigenic properties as complement Factor B, the protein serving an analogous function to component C2 in the alternative pathway. The protein, which is also a single carbohydrate-containing polypeptide chain, has an apparent mol.wt. of 95000 and threonine as N-terminal amino acid. The amino acid analyses of component C2 and Factor B are compared.


2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


1990 ◽  
Vol 10 (2) ◽  
pp. 561-568
Author(s):  
H Shimizu ◽  
K Mitomo ◽  
T Watanabe ◽  
S Okamoto ◽  
K Yamamoto

Interleukin-6 (IL-6) is one of the major mediators of inflammation, and its expression is inducible by the other inflammatory lymphokines, interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). We demonstrate that a common IL-6 promoter element, termed inflammatory lymphokine-responsive element (ILRE), is important for induction of IL-6 gene expression by IL-1 and TNF-alpha despite possible differences in the mechanisms of action of these lymphokines. Remarkably, the ILRE sequence, located between -73 to -63 relative to the mRNA cap site, is highly homologous to NF-kappa B transcription factor-binding motifs and binds an IL-1-TNF-alpha-inducible nuclear factor; the sequence specificities, binding characteristics, and subcellular localizations of this factor are indistinguishable from those of NF-kappa B. In addition, mutations of the ILRE sequence which impair the binding of this nuclear factor abolished the induction of IL-6 gene expression by IL-1 and TNF-alpha in vivo. These results indicate that a nuclear factor indistinguishable from NF-kappa B is involved in the transcriptional activation of the IL-6 gene by IL-1 and TNF-alpha.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Wafa A. AL-Megrin ◽  
Afrah F. Alkhuriji ◽  
Al Omar S. Yousef ◽  
Dina M. Metwally ◽  
Ola A. Habotta ◽  
...  

The abundant use of lead (Pb; toxic heavy metal) worldwide has increased occupational and ecosystem exposure, with subsequent negative health effects. The flavonoid luteolin (LUT) found in many natural foodstuffs possesses antioxidant and anti-inflammatory properties. Herein, we hypothesized that LUT could mitigate liver damage induced by exposure to lead acetate (PbAc). Male Wistar rats were allocated to four groups: control group received normal saline, LUT-treated group (50 mg/kg, oral, daily), PbAc-treated group (20 mg/kg, i.p., daily), and LUT+PbAc-treated group (received the aforementioned doses via the respective routes of administration); the rats were treated for 7 days. The results revealed that PbAc exposure significantly increased hepatic Pb residue and serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin value. Oxidative reactions were observed in the liver tissue following PbAc intoxication, characterized by the depletion and downregulation of antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1), and an increase in oxidants (malondialdehyde and nitric oxide). Additionally, PbAc increased the release and expression of the pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1 beta), inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, PbAc enhanced hepatocyte loss by increasing the expression of pro-apoptotic proteins (Bax and caspase-3) and downregulating the anti-apoptotic protein (Bcl-2). The changes in the aforementioned parameters were further confirmed by noticeable histopathological lesions. LUT supplementation significantly reversed all of the tested parameters in comparison with the PbAc-exposed group. In conclusion, our findings describe the potential mechanisms involved in the alleviation of PbAc-induced liver injury by luteolin via its potent anti-inflammatory, antioxidant, and anti-apoptotic properties.


1995 ◽  
Vol 15 (1) ◽  
pp. 112-119 ◽  
Author(s):  
S A Godambe ◽  
D D Chaplin ◽  
T Takova ◽  
L M Read ◽  
C J Bellone

Regulatory elements important for transcription of the murine interleukin-1 beta (IL-1 beta) gene lie within a DNase I-hypersensitive region located > 2,000 bp upstream from the transcription start site. We have identified within this region a novel positive regulatory element that is required for activation of an IL-1 beta promoter-chloramphenicol acetyltransferase (CAT) fusion gene in the murine macrophage line RAW264.7. Electrophoretic mobility shift analysis of the 3' portion (-2315 to -2106) of the hypersensitive region revealed at least two nuclear factor binding sites, one of which is located between positions -2285 and -2256. Competitive inhibition studies localized the binding site to a 15-bp sequence between -2285 and -2271. Nuclear factor binding was lost by mutation of the 6-bp sequence from -2280 to -2275. The specific retarded complex formed with RAW264.7 nuclear extract was not detected under similar conditions with nuclear extracts from RLM-11, a murine T-cell line which does not express IL-1 beta RNA. Mutation of the 6-bp sequence (-2280 to -2275) in the chimeric IL-1 beta promoter -4093 +I CAT plasmid virtually eliminated the activation of this reporter gene by lipopolysaccharide (LPS) in transfected RAW264.7 cells. Multimerization of the 15-bp sequence containing the core wild-type 6-bp sequence 5' of minimal homologous or heterologous promoters in CAT reporter plasmids resulted in significant enhancement of CAT expression compared with parallel constructs containing the mutant 6-bp core sequence. This element was LPS independent and position and orientation dependent. The multimerized 15-bp sequence did not enhance expression in RLM-11 cells. Methylation interference revealed contact residues from -2281 to -2271, CCAAAAAGGAA. Because a search of the NIH TFD data bank with the 11-bp binding site sequence found no homology to known nuclear factor binding sites, we have designated this sequence the IL1 beta -upstream nuclear factor 1 (IL1 beta -UNF1) target. UV cross-linking and sodium dodecyl sulfate-polyacrylamide electrophoresis identified an IL1 beta -UNF1-specific binding factor approximately 85 to 90 kDa in size.


Sign in / Sign up

Export Citation Format

Share Document