Characterization of a novel promoter insertion in the c-rel locus

1990 ◽  
Vol 10 (9) ◽  
pp. 4788-4794
Author(s):  
N Kabrun ◽  
N Bumstead ◽  
M J Hayman ◽  
P J Enrietto

Avian leukosis virus (ALV)-induced neoplasias are commonly found associated with integrations of proviral DNA in proximity to the myc gene. However, studies suggest that other genetic events are necessary for the complete neoplastic phenotype. A cell line (HP46) derived from an ALV-induced tumor has been analyzed and found to contain, in addition to an alteration in the myc gene, a promoter insertion in the c-rel locus. Both loci expressed large amounts of mRNA coding for their respective proteins. Several rel-related transcripts were expressed in the HP46 line, and four rel-related proteins of lower molecular weight than the wild-type p68c-rel product were detected. At least two of these transcripts contained U5 long terminal repeat sequences on the 5' end of the RNA. Structural data suggest that the messages may have evolved by an alternative splicing mechanism. This is the first example of a promoter insertion in the c-rel locus, a gene whose viral counterpart v-rel is responsible for the induction of lymphoid tumors.

1990 ◽  
Vol 10 (9) ◽  
pp. 4788-4794 ◽  
Author(s):  
N Kabrun ◽  
N Bumstead ◽  
M J Hayman ◽  
P J Enrietto

Avian leukosis virus (ALV)-induced neoplasias are commonly found associated with integrations of proviral DNA in proximity to the myc gene. However, studies suggest that other genetic events are necessary for the complete neoplastic phenotype. A cell line (HP46) derived from an ALV-induced tumor has been analyzed and found to contain, in addition to an alteration in the myc gene, a promoter insertion in the c-rel locus. Both loci expressed large amounts of mRNA coding for their respective proteins. Several rel-related transcripts were expressed in the HP46 line, and four rel-related proteins of lower molecular weight than the wild-type p68c-rel product were detected. At least two of these transcripts contained U5 long terminal repeat sequences on the 5' end of the RNA. Structural data suggest that the messages may have evolved by an alternative splicing mechanism. This is the first example of a promoter insertion in the c-rel locus, a gene whose viral counterpart v-rel is responsible for the induction of lymphoid tumors.


2002 ◽  
Vol 68 (9) ◽  
pp. 4390-4398 ◽  
Author(s):  
S. A. F. T. van Hijum ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
M. J. E. C. van der Maarel ◽  
L. Dijkhuizen

ABSTRACT Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


1979 ◽  
Vol 178 (2) ◽  
pp. 279-287 ◽  
Author(s):  
D K Podolsky ◽  
M M Weiser

A low-molecular-weight acceptor of galactosyltransferase activity was detected in sera and effusions of patients with extensive maligant disease. This substance was purified to homogeneity from both human serum and effusion by using sequential charcoal/Celite and DEAE-cellulose column chromatography. The purified acceptor was shown to act as substrate for both purified normal and cancer-associated human galactosyltransferase (EC 2.4.1.22) isoenzymes, but had a higher affinity for the cancer-associated isoenzyme (Km = 20 microM) than for the normal isoenzyme (Km = 500 microM). The substrate was found to be a glycopeptide with mol.wt. approx. 3600 determined by polyacrylamide-gel chromatography. Carbohyydate analysis demonstrated only the presence of glucosamine and mannose. Amino acid analysis revealed that the peptide moiety consisted of eight different amino acids, including two residues of asparagine and one residue of serine, but no threonine. These structural data suggest that the acceptor is a fraction of an asparagine-glucosamine type of glycoprotein.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1678-1684 ◽  
Author(s):  
Jana Krosl ◽  
Aline Mamo ◽  
Jalila Chagraoui ◽  
Brian T. Wilhelm ◽  
Simon Girard ◽  
...  

Abstract It is believed that hemopoietic stem cells (HSC), which colonize the fetal liver (FL) rapidly, expand to establish a supply of HSCs adequate for maintenance of hemopoiesis throughout life. Accordingly, FL HSCs are actively cycling as opposed to their predominantly quiescent bone marrow counterparts, suggesting that the FL microenvironment provides unique signals that support HSC proliferation and self-renewal. We now report the generation and characterization of mice with a mutant allele of Baf250a lacking exons 2 and 3. Baf250aE2E3/E2E3 mice are viable until E19.5, but do not survive beyond birth. Most interestingly, FL HSC numbers are markedly higher in these mice than in control littermates, thus raising the possibility that Baf250a determines the HSC pool size in vivo. Limit dilution experiments indicate that the activity of Baf250aE2E3/E2E3 HSC is equivalent to that of the wild-type counterparts. The Baf250aE2E3/E2E3 FL-derived stroma, in contrast, exhibits a hemopoiesis-supporting potential superior to the developmentally matched controls. To our knowledge, this demonstration is the first that a mechanism operating in a cell nonautonomous manner canexpand the pool size of the fetal HSC populations.


1998 ◽  
Vol 17 (2) ◽  
pp. 93-101
Author(s):  
Stefano Nigro ◽  
Anna Rapallo ◽  
Angela Di Vinci ◽  
Elio Geido ◽  
Roberto Orecchia ◽  
...  

A monoclonal antibody (AS-2) raised by using isolated nuclei from a human erythroleukemia cell line as immunogen is described.AS-2 was of IgM type and recognized proteins present in both isolated cytoplasms and nuclei. The molecular weight of the AS-2 recognized proteins in the cytoplasm was 200 kDa and 70 and 60 kDa in the nucleus. The relative amount of these proteins were measured simultaneously with DNA content by flow cytometry. We found the highest protein content (or stainability) for both cells and nuclei in late-G1, S and G2, at approximately the same level, and the lowest content in M and early-G1. Sorting based on DNA content and AS-2 associated fluorescence helped identifying the staining pattern of cells and nuclei. Interphase isolated nuclei and cell cytoplasms were characterized by interdispersed staining over the entire surfaces while mitoses showed two dots only. The present preliminary data indicate that the proteins recognized by the AS-2 monoclonal are cell cycle related and suggest that in mitoses they are associated with the centrosomes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2906-2906 ◽  
Author(s):  
Jean Fan ◽  
Lili Wang ◽  
Angela N Brooks ◽  
Youzhong Wan ◽  
Donna S Neuberg ◽  
...  

Abstract Large-scale sequencing efforts have identified SF3B1 as arecurrently mutated gene in chronic lymphocytic leukemia (CLL). While SF3B1 mutations have been associated with adverse clinical outcome in CLL, mechanistic understanding of its role in the oncogenic phenotype remains lacking. We therefore undertook a comprehensive transcriptomic characterization of CLL in relation to SF3B1 mutation status at both bulk and single cell levels. We first profiled bulk mature poly-A selected RNA by sequencing (RNA-seq) from 37 CLLs (13 SF3B1 wild-type, 24 mutated). After identifying and classifying splice alterations using the tool JuncBASE, we found SF3B1 mutation to be associated with increased alternative splicing, with the most pervasive changes in 3' splice site selection. 304 alternatively spliced events were significantly associated with SF3B1 mutation, 4 of which we validated by qRT-PCR in 20 independent CLL samples with known SF3B1 mutation status. We further identified 1963 differentially expressed genes (q < 0.2) associated with SF3B1 mutation. By gene set enrichment analysis, SF3B1 mutation appeared to impact a variety of cancer and CLL-associated gene pathways, including DNA damage response, apoptosis regulation, chromatin remodeling, RNA processing, and Notch activation (q < 0.01). ~20% of these gene sets were also found to be significantly enriched for genes exhibiting alternative splicing in association with SF3B1 mutation. As SF3B1 acts at the level of pre-mRNA, we also performed bulk RNA-seq with total RNA libraries generated from 5 CLLs (2 SF3B1 wild-type, 3 with the common K700E mutation). We again observed an enrichment of 3' splice site changes, along with ~30% overlap of differentially expressed genes, and ~16% overlap of enriched gene sets with the aforementioned poly-A data analysis. One differentially over-expressed gene associated with SF3B1 mutation unique to this total RNA data analysis and validated by total RNA qPCR of independent CLL samples was TERC, an essential RNA component of telomerase that serves as a replication template during telomeric elongation. TERC is a non-polyadenylated transcript and thus was undetected by our previous poly-A selected RNA-seq and by targeted qRT-PCR of oligo dT-generated cDNA. Recent reports have highlighted the involvement of the spliceosome in telomerase RNA processing, and shorter telomere length of CLLs with SF3B1 mutation. Thus, although further investigation will be needed, our analyses suggest a potential mechanism by which SF3B1 mutation contributes to aberrant regulation of telomerase activity. Since SF3B1 is commonly found as a subclonal mutation in CLL, and because signals obtained from bulk analyses reflect only the average characteristics of the population, we assessed the transcriptomic effects of SF3B1 mutation in single cells within a subset of CLL cases. We developed a novel and sensitive microfluidic approach that performs multiplexed targeted amplification of RNA to simultaneously detect somatic mutation status, gene expression (96 targets), and alternative splicing (45 targets) within the same individual cell for 96 to 288 cells from 5 patients with different SF3B1 mutations. From the same patient sample, single cells with SF3B1 mutation generally exhibited increased alternative splicing for events identified from the bulk analysis, thus confirming the association of SF3B1 mutation with altered splicing at the single cell level. Different SF3B1 hotspot mutations within the HEAT repeat domains exhibited similar patterns of alternative splicing while a mutation outside of the repeat domain did not. Furthermore, we confirmed significant changes in gene expression between SF3B1 wild-type and mutant cells of target genes involved in the Notch pathway (NCOR2), cell cycle (CDKN2A, CCND1) and apoptosis (TXNIP). Consistent with these analyses, functional studies with overexpression of full-length mutated SF3B1 in a hematopoietic cell lines confirmed the modulation of these pathways by this putative CLL driver. Our high-resolution single cell analysis further uncovered 2 transcription factors strongly associated with SF3B1 mutation but not previously appreciated (KLF3 and KLF8). Our comprehensive transcriptomic analysis thus highlights SF3B1 mutation as an efficient mechanism by which a complex of changes relevant to CLL biology are generated that can contribute to disease progression. Disclosures Kipps: Pharmacyclics Abbvie Celgene Genentech Astra Zeneca Gilead Sciences: Other: Advisor. Li:Fluidigm: Employment. Livak:Fluidigm: Employment.


1998 ◽  
Vol 180 (18) ◽  
pp. 4967-4973 ◽  
Author(s):  
Lotte B. Pedersen ◽  
Thomas Murray ◽  
David L. Popham ◽  
Peter Setlow

ABSTRACT The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed thatdacC expression (i) is initiated at the end of stationary phase; (ii) depends strongly on transcription factor ςH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacCinsertional mutant grew and sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression ofdacC in Escherichia coli showed that this gene encodes an ∼59-kDa membrane-associated penicillin-binding protein which is highly toxic when overexpressed.


2002 ◽  
Vol 184 (18) ◽  
pp. 5141-5150 ◽  
Author(s):  
John K. Cusick ◽  
Elizabeth Hager ◽  
Ronald E. Gill

ABSTRACT The BsgA protease is required for starvation-induced development in Myxococcus xanthus. Bypass suppressors of a bsgA mutant were isolated to identify genes that may encode additional components of BsgA protease-dependent regulation of development. Strain M951 was isolated following Tn5 mutagenesis of a bsgA mutant and was capable of forming fruiting bodies and viable spores in the absence of the BsgA protease. The Tn5Ω951 insertion was localized to a gene, bcsA, that encodes a protein that has significant amino acid similarity to a group of recently described flavin-containing monooxygenases involved in styrene catabolism. Mutations in bcsA bypassed the developmental requirements for both extracellular B and C signaling but did not bypass the requirement for A signaling. Bypass of the B-signaling requirement by the bcsA mutation was accompanied by restored expression of a subset of developmentally induced lacZ fusions to the BsgA protease-deficient strain. bcsA mutant cells developed considerably faster than wild-type cells at low cell density and altered transcriptional levels of a developmentally induced, cell-density-regulated gene (Ω4427), suggesting that the bcsA gene product may normally act to inhibit development in a cell-density-regulated fashion. Bypass of the requirements for both B and C signaling by bcsA mutations suggests a possible link between these two genetically, biochemically, and temporally distinct signaling requirements.


1978 ◽  
Vol 51 (5) ◽  
pp. 925-939 ◽  
Author(s):  
R. P. Lattimer ◽  
K. R. Welch

Abstract From the results presented here, it is clear that FD-MS is a very effective analytical method for determining molecular weights of polymer chemicals. Molecular ions were the only prominent ions produced in the FD mode of analysis for the series of representative polymer chemicals discussed in this paper. Good molecular ion spectra were obtained even from compounds that are quite unstable, both structurally and thermally. It is also evident, on the other hand, that FD-MS by itself provides only limited chemical structure information. The molecular weight is provided and often nothing else. Fortunately the molecular weight and “chemical intuition” regarding the history of the sample in question are often enough to deduce the structure. If not, then other techniques are available to provide complementary information. Electron impact (EI) mass spectra can be run on the same samples to obtain fragmentation patterns, and other spectro-scopic techniques (infrared and magnetic resonance) can be used to provide detailed structural information. Several application areas can be identified in which FD-MS can play an important role in the characterization of nolymer chemicals in industry. These include chemical identification (molecular weight and structure determination), direct detection of components in mixtures, identification of liquid chromatographic (LC) effluents, characterization of polymer blooms and extracts, identification of vapors from polymer processing, and identification of polymer chemical degradation products. For many of these applications the samples to be analyzed are very complex mixtures of chemical compounds. Electron impact mass spectroscopy is quite limited in its ability to analyze such complex mixtures due to the extensive fragmentation (and perhaps decomposition) that takes place in the ion source. Since molecular ions are normally the only prominent ions formed in the FD mode of analysis, FD-MS can be a very powerful tool for the characterization of polymer chemical mixtures. In summary, field desorption mass spectroscopy can in many cases provide molecular weight and structural data for polymer chemicals heretofore not obtainable by any analytical technique. In addition this information complements well the structural data obtained by magnetic resonance, infrared, and electron impact mass spectroscopy. We therefore feel confident that FD-MS will become increasingly important in the characterization of polymer chemicals in the future.


Sign in / Sign up

Export Citation Format

Share Document