scholarly journals Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.

1993 ◽  
Vol 13 (10) ◽  
pp. 6012-6023 ◽  
Author(s):  
R Cafferkey ◽  
P R Young ◽  
M M McLaughlin ◽  
D J Bergsma ◽  
Y Koltin ◽  
...  

Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.

1993 ◽  
Vol 13 (10) ◽  
pp. 6012-6023
Author(s):  
R Cafferkey ◽  
P R Young ◽  
M M McLaughlin ◽  
D J Bergsma ◽  
Y Koltin ◽  
...  

Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.


1995 ◽  
Vol 108 (12) ◽  
pp. 3745-3756 ◽  
Author(s):  
K. Takegawa ◽  
D.B. DeWald ◽  
S.D. Emr

We have cloned the gene, vps34+, from the fission yeast Schizosaccharomyces pombe which encodes an 801 amino acid protein with phosphatidylinositol 3-kinase activity. The S. pombe Vps34 protein shares 43% amino acid sequence identity with the Saccharomyces cerevisiae Vps34 protein and 28% identity with the p110 catalytic subunit of the mammalian phosphatidylinositol 3-kinase. When the vps34+ gene is disrupted, S.pombe strains are temperature-sensitive for growth and the mutant cells contain enlarged vacuoles. Furthermore, while wild-type strains exhibit substantial levels of phosphatidylinositol 3-kinase activity, this activity is not detected in the vps34 delta strain. S.pombe Vps34p-specific antiserum detects a single protein in cells of -90 kDa that fractionates almost exclusively with the crude membrane fraction. Phosphatidylinositol 3-kinase activity also is localized mainly in the membrane fraction of wild-type cells. Immunoisolated Vps34p specifically phosphorylates phosphatidylinositol on the D-3 position of the inositol ring to yield phosphatidylinositol(3)phosphate. but does not utilize phosphatidylinositol(4)phosphate or phosphatidylinositol(4,5)bisphosphate as substrates. In addition, when compared to the mammalian p110 phosphatidylinositol 3-kinase, S. pombe Vps34p is relatively insensitive to the inhibitors wortmannin and LY294002. Together, these results indicate that S. pombe Vps34 is more similar to the phosphatidylinositol-specific 3-kinase, Vps34p from S. cerevisiae, and is distinct from the p110/p85 and G protein-coupled phosphatidylinositol 3-kinases from mammalian cells. These data are discussed in relation to the possible role of Vps34p in vesicle-mediated protein sorting to the S. pombe vacuole.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yanyan He ◽  
Yang Liu ◽  
Qing-Zhu Wang ◽  
Feng Guo ◽  
Fengjuan Huang ◽  
...  

Objective. In diabetes mellitus, vitamin D3 deficiency affects sex hormone levels and male fertility; however, the mechanism leading to the disorder is unclear. This research was designed to investigate the mechanism of vitamin D3 deficiency and hypogonadism in diabetic rats. Our aim was to assess serum vitamin D3 levels and the relationship among vitamin D3, insulin-like growth factor-1 (IGF-1), and testicular function. Materials and Methods. Rats with streptozotocin-induced diabetes were randomly divided into four groups and treated with different doses of vitamin D3: no vitamin D3, low (0.025 μg/kg/day), high (0.1 μg/kg/day), and high (0.1 μg/kg/day) with JB-1 (the insulin-like growth factor-1 receptor inhibitor group, 100 μg/kg/day). The groups were compared with wild-type rats, which function as the control group. Various parameters such as vitamin D3 and IGF-1 were compared between the experimental and wild-type groups, and their correlations were determined. Results. Twelve weeks of vitamin D3 supplementation improved the testosterone levels, as shown by the increase in the level of serum IGF-1 in diabetic rats. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), which was a downstream of the signaling pathway of IGF-1, was significantly increased after vitamin D3 treatment. Conclusions. The study shows that vitamin D3 may promote the expression of testosterone and improve testicular function in diabetic rats by activating PI3K/AKT via IGF-1.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2961-2961
Author(s):  
Shuyue Ren ◽  
Fan Xue ◽  
Jan Feng ◽  
Tomasz Skorski

Abstract BCR/ABL fusion tyrosine kinase is responsible for the initiation and maintenance of the Philadelphia chromosome (Ph1)-positive chronic myelogenous leukemia (CML) and a cohort of acute lymphocytic leukemias (ALL). Our previous studies showed that a signaling protein phosphatidylinositol-3 kinase (PI-3k) is essential for the growth of CML cells, but not of normal hematopoietic cells, and that p85 subunit of PI-3k co-immunoprecipitates with BCR/ABL (Skorski et al., (1995) Blood 86, 726–36; Skorski et al., (1997) Embo J 16, 6151–61; Klejman et al., (2002) Oncogene 21, 5868–76). Therefore, we made an attempt to better characterize the p85 - BCR/ABL interactions. Here we show that SH3 domain of p85 (p85-SH3) pulls-down the p210BCR/ABL kinase from hematopoietic cell lysates. In addition, we characterize the p85-SH3 mutants, which abrogate or enhance this interaction. The results of pull-down assays of the p85-SH3 mutants seem to support the assumption that p85-SH3 interacts with the BCR/ABL protein network via the proline-rich (PxxP) region. One of the surprising findings was the enhanced binding affinity of the tyrosine to phenylalanine p85-SH3 domain mutants in comparison to the wild-type p85-SH3. Based on these results we speculate on the capability of p85-SH3 to interact with BCR/ABL and on the p85-SH3 conformational requirements necessary for this reaction. PxxP - binding appears to be required for the interaction of p85-SH3 with BCR/ABL protein complex and activation of the catalytic activity of PI-3k, whereas subsequent BCR/ABL-dependent phosphorylation of the tyrosines may facilitate the release of activated PI-3k from the complex.


2001 ◽  
Vol 69 (8) ◽  
pp. 5157-5161 ◽  
Author(s):  
Nadia Khelef ◽  
Howard A. Shuman ◽  
Frederick R. Maxfield

ABSTRACT Wild-type Legionella pneumophila grows in human macrophages within a replicative phagosome, avoiding lysosomal fusion, while nonreplicative mutants are killed in lysosomes. Wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, blocks phagocytosis of an avirulent mutant, but not of wild-type L. pneumophila, without affecting membrane ruffling and actin polymerization. These results show that wild-type and mutant Legionella strains use different entry pathways. They suggest that PI3Ks are involved in phagocytosis of an avirulent L. pneumophila mutant and regulate the ability of microorganisms to generate a replicative phagosome.


2012 ◽  
Vol 81 (2) ◽  
pp. 478-486 ◽  
Author(s):  
Gertrude O. Oppong ◽  
Glenn J. Rapsinski ◽  
Tiffanny N. Newman ◽  
Jessalyn H. Nishimori ◽  
Steven G. Biesecker ◽  
...  

ABSTRACTCurli fibrils, the best-characterized functional bacterial amyloids, are an important component of enterobacterial biofilms. We have previously shown that curli fibrils are recognized by the Toll-like receptor 2 (TLR2)/TLR1 heterodimer complex. Utilizing polarized T-84 cells, an intestinal epithelial cell line derived from colon carcinoma grown on semipermeable tissue culture inserts, we determined that infection with aSalmonella entericaserovar TyphimuriumcsgBAmutant, which does not express curli, resulted in an increase in intestinal barrier permeability and an increase in bacterial translocation compared to infection with curliated wild-typeS. Typhimurium. When the TLR2 downstream signaling molecule phosphatidylinositol 3-kinase (PI3K) was blocked using wortmannin or LY294002, the difference in disruption of the intestinal epithelium and bacterial translocation was no longer observed. Additionally, disruption of polarized T-84 cells treated basolaterally with the TLR5 ligand flagellin was prevented when the polarized cells were simultaneously treated with the synthetic TLR2/TLR1 ligand Pam3CSK4or with purified curli fibrils in the apical compartment. Similar toin vitroobservations, C57BL/6 mice infected with thecsgBAmutant suffered increased disruption of the intestinal epithelium and therefore greater dissemination of the bacteria to the mesenteric lymph nodes than mice infected with wild-typeS. Typhimurium. The differences in disruption of the intestinal epithelium and bacterial dissemination in the mice infected withcsgBAmutant or wild-typeS. Typhimurium were not apparent in TLR2-deficient mice. Overall, these studies report for the first time that activation of the TLR2/PI3K pathway by microbial amyloids plays a critical role in regulating the intestinal epithelial barrier as well as monitoring bacterial translocation during infection.


2021 ◽  
pp. 107815522110353
Author(s):  
Mahshid Mehdizadeh ◽  
Behrouz Farhadihosseinabadi ◽  
Maryam Nikoonezhad ◽  
Ghazaleh Sankanian ◽  
Masoud Soleimani ◽  
...  

Multiple myeloma is one of the most hard-to-treat cancers among blood malignancies due to the high rate of drug resistance and relapse. The researchers are trying to find more effective drugs for treatment of the disease. Hence, the use of drugs targeting signaling pathways has become a powerful weapon. Overactivation of phosphatidylinositol 3-kinase signaling pathways is frequently observed in multiple myeloma cancer cells, which increases survival, proliferation, and even drug resistance in such cells. In recent years, drugs that inhibit the mediators involved in this biological pathway have shown promising results in the treatment of multiple myeloma. In the present study, we aimed to introduce phosphatidylinositol 3-kinase signaling inhibitors which include small molecules, herbal compounds, and microRNAs.


1991 ◽  
Vol 11 (9) ◽  
pp. 4698-4709
Author(s):  
P van der Geer ◽  
T Hunter

The receptor for colony-stimulating factor-1 (CSF-1) is a receptor protein-tyrosine kinase. To study the possible function of CSF-1 receptor autophosphorylation, two autophosphorylation sites, Tyr-706, located in the kinase insert, and Tyr-807, a residue conserved in all protein-tyrosine kinases, were changed independently to either phenylalanine or glycine. Wild-type and mutant receptors were stably expressed in Rat-2 cells. In response to CSF-1, cells expressing Phe- or Gly-706 mutant receptors showed increased growth rate and altered cell morphology. Both the Phe- and Gly-706 mutant receptors associated with and phosphorylated phosphatidylinositol-3 kinase at levels comparable with those of wild-type receptors. However, these mutant receptors differed subtly from each other and from the wild-type receptor in their ability to induce different aspects of the response to CSF-1. The Phe-706 mutant receptor was most strongly affected in its ability to increase growth rate or elevate the levels of c-fos and NGF1A mRNAs, whereas the Gly-706 mutant receptor was most markedly affected in its ability to induce a change in cell morphology or increase the levels of c-jun and NGF1A mRNAs. These findings indicate that Tyr-706 itself, or this region of the receptor, may be important for interaction of the CSF-1 receptor with different signalling pathways. Gly-807 mutant receptors lacked protein-tyrosine kinase activity, failed to respond to CSF-1, and were defective in biosynthetic processing. Phe-807 mutant receptors had 40 to 60% reduced protein-tyrosine kinase activity in vitro. Although cells expressing Phe-807 receptors were able to respond to CSF-1, the changes in growth rate and cell morphology were significantly less than seen with wild-type receptors, and the induction of early response genes was also slightly lower than for the wild-type receptor. In contrast, Phe-807 receptors were equivalent to wild-type receptors when tested for their ability to interact with phosphatidylinositol-3 kinase. These findings indicate that phosphorylation of Tyr-807 may be important for full activation of the receptor.


2014 ◽  
Vol 25 (10) ◽  
pp. 1608-1619 ◽  
Author(s):  
Gus Lawrence ◽  
Christopher C. Brown ◽  
Blake A. Flood ◽  
Surya Karunakaran ◽  
Margarita Cabrera ◽  
...  

Maturation of organelles in the endolysosomal pathway requires exchange of the early endosomal GTPase Rab5/Vps21 for the late endosomal Rab7/Ypt7. The Rab exchange depends on the guanine nucleotide exchange factor activity of the Mon1-Ccz1 heterodimer for Ypt7. Here we investigate vacuole binding and recycling of Mon1-Ccz1. We find that Mon1-Ccz1 is absent on vacuoles lacking the phosphatidic acid phosphatase Pah1, which also lack Ypt7, the phosphatidylinositol 3-kinase Vps34, and the lipid phosphatidylinositol 3-phosphate (PI3P). Interaction of Mon1-Ccz1 with wild-type vacuoles requires PI3P, as shown in competition experiments. We also find that Mon1 is released from vacuoles during the fusion reaction and its release requires its phosphorylation by the type 1 casein kinase Yck3. In contrast, Mon1 is retained on vacuoles lacking Yck3 or when Mon1 phosphorylation sites are mutated. Phosphorylation and release of Mon1 is restored with addition of recombinant Yck3. Together the results show that Mon1 is recruited to endosomes and vacuoles by PI3P and, likely after activating Ypt7, is phosphorylated and released from vacuoles for recycling.


Sign in / Sign up

Export Citation Format

Share Document