scholarly journals Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene.

1995 ◽  
Vol 15 (11) ◽  
pp. 6036-6044 ◽  
Author(s):  
A Chiaramello ◽  
K Neuman ◽  
K Palm ◽  
M Metsis ◽  
T Neuman

Sequence analysis of rat and human low-affinity nerve growth factor receptor p75LNGFR gene promoter regions revealed a single E-box cis-acting element, located upstream of the major transcription start sites. Deletion analysis of the E-box sequence demonstrated that it significantly contributes to p75LNGFR promoter activity. This E box has a dual function; it mediates either activation or repression of the p75LNGFR promoter activity, depending on the interacting transcription factors. We showed that the two isoforms of the class A basic helix-loop-helix (bHLH) transcription factor ME1 (ME1a and ME1b), the murine homolog of the human HEB transcription factor, specifically repress p75LNGFR promoter activity. This repression can be released by coexpression of the HLH Id2 transcriptional regulator. In vitro analyses demonstrated that ME1a forms a stable complex with the p75LNGFR E box and likely competes with activating E-box-binding proteins. By using ME1a-overexpressing PC12 cells, we showed that the endogenous p75LNGFR gene is a target of ME1a repression. Together, these data demonstrate that the p75LNGFR E box and the interacting bHLH transcription factors are involved in the regulation of p75LNGFR gene expression. These results also show that class A bHLH transcription factors can repress and Id-like negative regulators can stimulate gene expression.

2017 ◽  
Author(s):  
E Perea-Atienza ◽  
S.G. Sprecher ◽  
P Martínez

ABSTRACTBackgroundThe basic Helix loop helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and are widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellidXenoturbella bockiand the acoelSymsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis.ResultsHere, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoelS. roscoffensis.Based on their expression patterns several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles.ConclusionOur results suggest that the main roles of the bHLH genes ofS. roscoffensisare evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/E47 and SrOlig.


2011 ◽  
Vol 63 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Isidora Petrovic ◽  
Natasa Kovacevic-Grujicic ◽  
Jelena Popovic ◽  
A. Krstic ◽  
Milena Milivojevic ◽  
...  

The SOX18 transcription factor plays an important role in endothelial cell specification, angiogenesis and atherogenesis. By profiling transcription factor interactions (TranSignal TM TF Protein Array) we identified several transcription factors implicated in angiogenesis that have the ability to bind to the SOX18 optimal promoter region in vitro. In this report we focused our attention on distinct transcription factors identified by the array as belonging to AP-1 and CREB/ATF protein families. In particular, we analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expression. Functional analysis revealed that CREB acts as a repressor, while JunB, c-Jun and ATF3 act as activators of SOX18 promoter activity. Our findings indicate that a transcriptional network that includes CREB, JunB, c-Jun and ATF3 could be involved in angiogenesis-related transcriptional regulation of the SOX18 gene.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yuki Shiimura ◽  
Hideko Ohgusu ◽  
Takahiro Sato ◽  
Masayasu Kojima

To examine the gene expression of ghrelin, a growth hormone releasing and appetite stimulating hormone from stomach, we constructed human ghrelin promoter-reporter vectors and analyzed the promoter activity. The ghrelin promoter activity was high when cultured cells that express ghrelin mRNA endogenously like TT or ECC10 cells were used, indicating that these cells contain factors necessary for full expression of the human ghrelin gene. The human ghrelin promoter contains both positive and negative regulatory regions. A transient decrease of the promoter activity was found when the reporter vector with the −1600 fragment of the human ghrelin promoter was transfected into cultured cells. We then examined the effect of several transcription factors on the ghrelin promoter activity and found that NF-κB suppressed and that Nkx2.2, a homeodomain-containing transcription factor that is important for ghrelin cell development in pancreas, activates the promoter activity. These transcription factors may be possible targets for the control of ghrelin gene expression.


1996 ◽  
Vol 16 (2) ◽  
pp. 626-633 ◽  
Author(s):  
M Peyton ◽  
C M Stellrecht ◽  
F J Naya ◽  
H P Huang ◽  
P J Samora ◽  
...  

Using degenerate PCR cloning we have identified a novel basic helix-loop-helix (bHLH) transcription factor, BETA3, from a hamster insulin tumor (HIT) cell cDNA library. Sequence analysis revealed that this factor belongs to the class B bHLH family and has the highest degree of homology with another bHLH transcription factor recently isolated in our laboratory, BETA2 (neuroD) (J. E. Lee, S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick, and H. Weintraub, Science 268:836-844, 1995; F. J. Naya, C. M. M. Stellrecht, and M.-J. Tsai, Genes Dev. 8:1009-1019, 1995). BETA2 is a brain- and pancreatic-islet-specific bHLH transcription factor and is largely responsible for the tissue-specific expression of the insulin gene. BETA3 was found to be tissue restricted, with the highest levels of expression in HIT, lung, kidney, and brain cells. Surprisingly, despite the homology between BETA2 and BETA3 and its intact basic region, BETA3 is unable to bind the insulin E box in bandshift analysis as a homodimer or as a heterodimer with the class A bHLH factors E12, E47, or BETA1. Instead, BETA3 inhibited both the E47 homodimer and the E47/BETA2 heterodimer binding to the insulin E box. In addition, BETA3 greatly repressed the BETA2/E47 induction of the insulin enhancer in HIT cells as well as the MyoD/E47 induction of a muscle-specific E box in the myoblast cell line C2C12. In contrast, expression of BETA3 had no significant effect on the GAL4-VP16 transcriptional activity. Immunoprecipitation analysis demonstrates that the mechanism of repression is via direct protein-protein interaction, presumably by heterodimerization between BETA3 and class A bHLH factors.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 679
Author(s):  
Yanbo Huo ◽  
Jing Zhang ◽  
Bin Zhang ◽  
Ling Chen ◽  
Xing Zhang ◽  
...  

Triptolide, an important bioactive diterpenoid extracted from the plant Tripterygium wilfordii, exhibits many pharmacological activities. MYC2 transcription factor (TF) plays an important role in the regulation of various secondary metabolites in plants. However, whether MYC2 TF could regulate the biosynthesis of triptolide in T. wilfordii is still unknown. In this study, two homologous MYC2 TF genes, TwMYC2a and TwMYC2b, were isolated from T. wilfordii hairy roots and functionally characterized. The analyses of the phylogenetic tree and subcellular localization showed that they were grouped into the IIIe clade of the bHLH superfamily with other functional MYC2 proteins and localized in the nucleus. Furthermore, yeast one-hybrid and GUS transactivation assays suggested that TwMYC2a and TwMYC2b inhibited the promoter activity of the miltiradiene synthase genes, TwTPS27a and TwTPS27b, by binding to the E-box (CACATG) and T/G-box (CACGTT) motifs in their promoters. Transgenic results revealed that RNA interference of TwMYC2a/b significantly enhanced the triptolide accumulation in hairy roots and liquid medium by upregulating the expression of several key biosynthetic genes, including TwMS (TwTPS27a/b), TwCPS (TwTPS7/9), TwDXR, and TwHMGR1. In summary, our findings show that TwMYC2a and TwMYC2b act as two negative regulators of triptolide biosynthesis in T. wilfordii hairy roots and also provide new insights on metabolic engineering of triptolide in the future.


2005 ◽  
Vol 19 (9) ◽  
pp. 2245-2257 ◽  
Author(s):  
Cheol Yi Hong ◽  
Eun-Yeung Gong ◽  
Kabsun Kim ◽  
Ji Ho Suh ◽  
Hyun-Mi Ko ◽  
...  

Abstract Androgen receptor (AR) is important in male sexual differentiation and testicular function. Here, we demonstrate the regulation of AR expression and its transactivation by the basic helix-loop-helix (bHLH) transcription factor Pod-1, the expression of which in postnatal testis reciprocally coincides with the expression of AR. Pod-1 represses the promoter activity of AR, possibly through its E-box. An AR promoter region of 169 bp, which harbors one canonical E-box, is sufficient for the Pod-1-repression and bound by purified Pod-1 proteins. Pod-1 also suppresses the transactivation of AR. Transient transfection analyses of mammalian cells show that Pod-1 represses AR transactivation in a dose-dependent manner. Furthermore, yeast two-hybrid, glutathione-S-transferase-pull-down, and coimmunoprecipitation analyses reveal that Pod-1 directly associates with AR through its N-terminal region and through the DNA binding-hinge domain of AR. Interestingly, Pod-1 recruits histone deacetylase (HDAC)-1 to inhibit both promoter activity and transactivation of AR. Overexpression of HDAC1 further inhibits the Pod-1-mediated repressions and Pod-1 directly interacts with HDAC1. Furthermore, chromatin immunoprecipitation assay reveals that HDAC1 is recruited with Pod-1 to the endogenous AR promoter and the androgen-regulated Pem promoter. Taken together, these results suggest that Pod-1, which controls AR transcription and function, may play an important role in the development and function of the testis.


2007 ◽  
Vol 27 (16) ◽  
pp. 5910-5920 ◽  
Author(s):  
Analeah B. Heidt ◽  
Anabel Rojas ◽  
Ian S. Harris ◽  
Brian L. Black

ABSTRACT The MyoD family of basic helix-loop-helix (bHLH) transcription factors has the remarkable ability to induce myogenesis in vitro and in vivo. This myogenic specificity has been mapped to two amino acids in the basic domain, an alanine and threonine, referred to as the myogenic code. These essential determinants of myogenic specificity are conserved in all MyoD family members from worms to humans, yet their function in myogenesis is unclear. Induction of the muscle transcriptional program requires that MyoD be able to locate and stably bind to sequences present in the promoter regions of critical muscle genes. Recent studies have shown that MyoD binds to noncanonical E boxes in the myogenin gene, a critical locus required for myogenesis, through interactions with resident heterodimers of the HOX-TALE transcription factors Pbx1A and Meis1. In the present study, we show that the myogenic code is required for MyoD to bind to noncanonical E boxes in the myogenin promoter and for the formation of a tetrameric complex with Pbx/Meis. We also show that these essential determinants of myogenesis are sufficient to confer noncanonical E box binding to the E12 basic domain. Thus, these data show that noncanonical E box binding correlates with myogenic potential, and we speculate that the myogenic code residues in MyoD function as myogenic determinants via their role in noncanonical E box binding and recognition.


2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Sign in / Sign up

Export Citation Format

Share Document