scholarly journals REF2 encodes an RNA-binding protein directly involved in yeast mRNA 3'-end formation.

1995 ◽  
Vol 15 (3) ◽  
pp. 1689-1697 ◽  
Author(s):  
R Russnak ◽  
K W Nehrke ◽  
T Platt

The Saccharomyces cerevisiae mutant ref2-1 (REF = RNA end formation) was originally identified by a genetic strategy predicted to detect decreases in the use of a CYC1 poly(A) site interposed within the intron of an ACT1-HIS4 fusion reporter gene. Direct RNA analysis now proves this effect and also demonstrates the trans action of the REF2 gene product on cryptic poly(A) sites located within the coding region of a plasmid-borne ACT1-lacZ gene. Despite impaired growth of ref2 strains, possibly because of a general defect in the efficiency of mRNA 3'-end processing, the steady-state characteristics of a variety of normal cellular mRNAs remain unaffected. Sequencing of the complementing gene predicts the Ref2p product to be a novel, basic protein of 429 amino acids (M(r), 48,000) with a high-level lysine/serine content and some unusual features. Analysis in vitro, with a number of defined RNA substrates, confirms that efficient use of weak poly(A) sites requires Ref2p: endonucleolytic cleavage is carried out accurately but at significantly lower rates in extracts prepared from delta ref2 cells. The addition of purified, epitope-tagged Ref2p (Ref2pF) reestablishes wild-type levels of activity in these extracts, demonstrating direct involvement of this protein in the cleavage step of 3' mRNA processing. Together with the RNA-binding characteristics of Ref2pF in vitro, our results support an important contributing role for the REF2 locus in 3'-end processing. As the first gene genetically identified to participate in mRNA 3'-end maturation prior to the final polyadenylation step, REF2 provides an ideal starting point for identifying related genes in this event.

2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Rashmi Gupta ◽  
Carolina Rodrigues Felix ◽  
Matthew P. Akerman ◽  
Kate J. Akerman ◽  
Cathryn A. Slabber ◽  
...  

ABSTRACTMycobacterium tuberculosisand the fast-growing speciesMycobacterium abscessusare two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistantM. tuberculosisstrains and the high level of intrinsic resistance ofM. abscessuscall for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), againstM. abscessusandM. tuberculosis. We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicatingin vitroconditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverseM. tuberculosisandM. abscessusclinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target theM. tuberculosisgyrase.In vitroenzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity againstM. tuberculosisandM. abscessusthat act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


2020 ◽  
Author(s):  
Shaoyi Ji ◽  
Ze Yang ◽  
Leonardi Gozali ◽  
Thomas Kenney ◽  
Arif Kocabas ◽  
...  

AbstractMature mRNA molecules are typically considered to be comprised of a 5’UTR, a 3’UTR and a coding region (CDS), all attached until degradation. Unexpectedly, however, there have been multiple recent reports of widespread differential expression of mRNA 3’UTRs and their cognate coding regions, resulting in the expression of isolated 3’UTRs (i3’UTRs); these i3’UTRs can be highly expressed, often in reciprocal patterns to their cognate CDS. Similar to the role of other lncRNAs, isolated 3’UTRs are likely to play an important role in gene regulation but little is known about the contexts in which they are deployed. To begin to parse the functions of i3’UTRs, here we carry out in vitro, in vivo and in silico analyses of differential 3’UTR/CDS mRNA ratio usage across tissues, development and cell state changes both for a select list of developmentally important genes as well as through unbiased transcriptome-wide analyses. Across two developmental paradigms we find a distinct switch from high i3’UTR expression of stem cell related genes in proliferating cells compared to newly differentiated cells. Our unbiased transcriptome analysis across multiple gene sets shows that regardless of tissue, genes with high 3’UTR to CDS ratios belong predominantly to gene ontology categories related to cell-type specific functions while in contrast, the gene ontology categories of genes with low 3’UTR to CDS ratios are similar and relate to common cellular functions. In addition to these specific findings our data provide critical information from which detailed hypotheses for individual i3’UTRs can be tested-with a common theme that i3’UTRs appear poised to regulate cell-specific gene expression and state.Significance StatementThe widespread existence and expression of mRNA 3’ untranslated sequences in the absence of their cognate coding regions (called isolated 3’UTRs or i3’UTRs) opens up considerable avenues for gene regulation not previously envisioned. Each isolated 3’UTR may still bind and interact with micro RNAs, RNA binding proteins as well as other nucleic acid sequences, all in the absence or low levels of cognate protein production. Here we document the expression, localization and regulation of i3’UTRs both within particular biological systems as well as across the transcriptome. As this is an entirely new area of experimental investigation these early studies are seminal to this burgeoning field.


2009 ◽  
Vol 54 (1) ◽  
pp. 491-501 ◽  
Author(s):  
Olivier Delelis ◽  
Sylvain Thierry ◽  
Frédéric Subra ◽  
Françoise Simon ◽  
Isabelle Malet ◽  
...  

ABSTRACT Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drug's activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized. It was suggested that mutations at residue Y143 might constitute a third primary pathway for resistance. The aims of this study were to investigate the susceptibility of HIV-1 Y143R/C mutants to raltegravir and to determine the effects of these mutations on the IN-mediated reactions. Our observations demonstrate that Y143R/C mutants are strongly impaired for both of these activities in vitro. However, Y143R/C activity can be kinetically restored, thereby reproducing the effect of the secondary G140S mutation that rescues the defect associated with the Q148R/H mutants. A molecular modeling study confirmed that Y143R/C mutations play a role similar to that determined for Q148R/H mutations. In the viral replicative context, this defect leads to a partial block of integration responsible for a weak replicative capacity. Nevertheless, the Y143 mutant presented a high level of resistance to raltegravir. Furthermore, the 50% effective concentration (EC50) determined for Y143R/C mutants was significantly higher than that obtained with G140S/Q148R mutants. Altogether our results not only show that the mutation at position Y143 is one of the mechanisms conferring resistance to RAL but also explain the delayed emergence of this mutation.


2001 ◽  
Vol 21 (17) ◽  
pp. 5879-5888 ◽  
Author(s):  
Jia Yu ◽  
J. Eric Russell

ABSTRACT Human globins are encoded by mRNAs exhibiting high stabilities in transcriptionally silenced erythrocyte progenitors. Unlike α-globin mRNA, whose stability is enhanced by assembly of a specific messenger RNP (mRNP) α complex on its 3′ untranslated region (UTR), neither the structure(s) nor the mechanism(s) that effects the high-level stability of human β-globin mRNA has been identified. The present work describes an mRNP complex assembling on the 3′ UTR of the β-globin mRNA that exhibits many of the properties of the stability-enhancing α complex. The β-globin mRNP complex is shown to contain one or more factors homologous to αCP, a 39-kDa RNA-binding protein that is integral to α-complex assembly. Sequence analysis implicates a specific 14-nucleotide pyrimidine-rich track within its 3′ UTR as the site of β-globin mRNP assembly. The importance of this track to mRNA stability is subsequently verified in vivo using mice expressing human β-globin transgenes that contain informative mutations in this region. In combination, the in vitro and in vivo analyses indicate that the high stabilities of the α- and β-globin mRNAs are maintained through related mRNP complexes that may share a common regulatory pathway.


1997 ◽  
Vol 17 (6) ◽  
pp. 3028-3036 ◽  
Author(s):  
R S McLaren ◽  
N Caruccio ◽  
J Ross

Histone mRNA is destabilized at the end of S phase and in cell-free mRNA decay reaction mixtures supplemented with histone proteins, indicating that histones might autoregulate the histone mRNA half-life. Histone mRNA destabilization in vitro requires three components: polysomes, histones, and postpolysomal supernatant (S130). Polysomes are the source of the mRNA and mRNA-degrading enzymes. To investigate the role of the S130 in autoregulation, crude S130 was fractionated by histone-agarose affinity chromatography. Two separate activities affecting the histone mRNA half-life were detected. The histone-agarose-bound fraction contained a histone mRNA destabilizer that was activated by histone proteins; the unbound fraction contained a histone mRNA stabilizer. Further chromatographic fractionation of unbound material revealed only a single protein stabilizer, which was purified to homogeneity, partially sequenced, and found to be La, a well-characterized RNA-binding protein. When purified La was added to reaction mixtures containing polysomes, a histone mRNA decay intermediate was stabilized. This intermediate corresponded to histone mRNA lacking 12 nucleotides from its 3' end and containing an intact coding region. Anti-La antibody blocked the stabilization effect. La had little or no effect on several other cell cycle-regulated mRNAs. We suggest that La prolongs the histone mRNA half-life during S phase and thereby increases histone protein production.


2000 ◽  
Vol 20 (17) ◽  
pp. 6259-6268 ◽  
Author(s):  
Tomás Aragón ◽  
Susana de la Luna ◽  
Isabel Novoa ◽  
Luis Carrasco ◽  
Juan Ortín ◽  
...  

ABSTRACT Influenza virus NS1 protein is an RNA-binding protein whose expression alters several posttranscriptional regulatory processes, like polyadenylation, splicing, and nucleocytoplasmic transport of cellular mRNAs. In addition, NS1 protein enhances the translational rate of viral, but not cellular, mRNAs. To characterize this effect, we looked for targets of NS1 influenza virus protein among cellular translation factors. We found that NS1 coimmunoprecipitates with eukaryotic initiation factor 4GI (eIF4GI), the large subunit of the cap-binding complex eIF4F, either in influenza virus-infected cells or in cells transfected with NS1 cDNA. Affinity chromatography studies using a purified His-NS1 protein-containing matrix showed that the fusion protein pulls down endogenous eIF4GI from COS-1 cells and labeled eIF4GI translated in vitro, but not the eIF4E subunit of the eIF4F factor. Similar in vitro binding experiments with eIF4GI deletion mutants indicated that the NS1-binding domain of eIF4GI is located between residues 157 and 550, in a region where no other component of the translational machinery is known to interact. Moreover, using overlay assays and pull-down experiments, we showed that NS1 and eIF4GI proteins interact directly, in an RNA-independent manner. Mapping of the eIF4GI-binding domain in the NS1 protein indicated that the first 113 N-terminal amino acids of the protein, but not the first 81, are sufficient to bind eIF4GI. The first of these mutants has been previously shown to act as a translational enhancer, while the second is defective in this activity. Collectively, these and previously published data suggest a model where NS1 recruits eIF4GI specifically to the 5′ untranslated region (5′ UTR) of the viral mRNA, allowing for the preferential translation of the influenza virus messengers.


2018 ◽  
Vol 44 (3) ◽  
pp. 254-260
Author(s):  
Weidong Qiang ◽  
Xue Feng ◽  
Yixin Li ◽  
Xinxin Lan ◽  
Kun Ji ◽  
...  

Abstract Objective Targeting the protein of interest to a particular tissue to achieve high-level expression is an important strategy to increase expression efficiency. The use of the plant seed oil body as a bioreactor can not only increase the amount of target protein, but also reduce the cost of downstream processing. Methods VEGF165 was expressed in Arabidopsis thaliana seeds via oilbody fusion technology. The pKO-VEGF165 vector was construted and transformed into A. thaliana seeds. T3 transgenic seeds was detected by SDS-PAGE and western blot methods. The cell activity was tested by MTT methods. Result The phaseolin promoter was used to drive seed-specific expression of the VEGF165 gene in transgenic A. thaliana. The coding region of VEGF165 was fused to the Arabidopsis oleosin sequence to target the protein to the oil bodies in the seeds of transgenic plants. The T-DNA region of recombinant plasmid pKO-VEGF165 was shifted to A. thaliana seeds via the floral-dip method. Protein was analyzed by electrophoresis and protein hybridization analyses. Finally, MTT assays showed that the oleosin-VEGF165 fusion protein played a part in the proliferation of HUVEC cells in vitro. Conclusion Oleosin-VEGF165 was successfully expressed and it had stimulated HUVEC cell proliferation activity.


1992 ◽  
Vol 116 (4) ◽  
pp. 933-941 ◽  
Author(s):  
H Ohmori ◽  
S Toyama ◽  
S Toyama

We have previously described the isolation of a mutant KB cell (Cyt 1 mutant) resistant to the cytotoxic effect of cytochalasin B (CB). The Cyt 1 mutant carries an altered form of beta-actin (beta'-actin) and lacks normal beta-actin (Toyama, S., and S. Toyama. 1984. Cell. 37:609-614). Increased resistance of the Cyt 1 mutant to CB in vivo is reflected in altered properties of beta'-actin in vitro (Toyama, S., and S. Toyama. 1988. J. Cell Biol. 107:1499-1504). Here, we show that the mutation in beta-actin is solely responsible for the cytochalasin-resistant phenotype of the Cyt mutant. We have isolated a cDNA clone encoding beta'-actin from Cyt 1 cells. Sequence analysis reveals two mutations in the coding region that substitute two amino acid residues (Val139----Met and Ala295----Asp). Expression of the beta'-actin cDNA confers cytochalasin resistance upon transformed cytochalasin-sensitive KB cells. Levels of resistance to CB in the transformed cell clones correlate well with amounts of beta'-actin polypeptide. Both of the two mutations in beta'-actin are necessary for the high level expression of cytochalasin resistance. Overall, we conclude that the primary site of action of cytochalasin on cell motility processes in vivo is actin.


2017 ◽  
Vol 199 (6) ◽  
Author(s):  
Natalie M. McAdams ◽  
Andrea Patterson ◽  
Paul Gollnick

ABSTRACT Transcription of the tryptophan (trp) operon in Bacillus subtilis is regulated by an attenuation mechanism. Attenuation is controlled by the t rp RNA-binding attenuation protein (TRAP). TRAP binds to a site in the 5′ leader region of the nascent trp transcript in response to the presence of excess intracellular tryptophan. This binding induces transcription termination upstream of the structural genes of the operon. In prior attenuation models, the role of TRAP was only to alter the secondary structure of the leader region RNA so as to promote formation of the trp attenuator, which was presumed to function as an intrinsic terminator. However, formation of the attenuator alone has been shown to be insufficient to induce efficient termination, indicating that TRAP plays an additional role in this process. To further examine the function of TRAP, we performed a genetic selection for mutant TRAPs that bind tryptophan and RNA but show diminished termination at the trp attenuator. Five such TRAP mutants were obtained. Four of these have substitutions at Glu60, three of which are Lys (E60K) substitutions and the fourth of which is a Val (E60V) substitution. The fifth mutant obtained contains a substitution at Ile63, which is on the same β-strand of TRAP as Glu60. Purified E60K TRAP binds tryptophan and RNA with properties similar to those of the wild type but is defective at inducing termination at the trp attenuator in vitro. IMPORTANCE Prior models for attenuation control of the B. subtilis trp operon suggested that the only role for TRAP is to bind to the leader region RNA and alter its folding to induce formation of an intrinsic terminator. However, several recent studies suggested that TRAP plays an additional role in the termination mechanism. We hypothesized that this function could involve residues in TRAP other than those required to bind tryptophan and RNA. Here we obtained TRAP mutants with alterations at Glu60 that are deficient at inducing termination in the leader region while maintaining tryptophan and RNA binding properties similar to those of the WT protein. These studies provide additional evidence that TRAP-mediated transcription termination at the trp attenuator is neither intrinsic nor Rho dependent.


Sign in / Sign up

Export Citation Format

Share Document