scholarly journals A new member of the I kappaB protein family, I kappaB epsilon, inhibits RelA (p65)-mediated NF-kappaB transcription.

1997 ◽  
Vol 17 (10) ◽  
pp. 6184-6190 ◽  
Author(s):  
Z Li ◽  
G J Nabel

A novel member of the I kappaB family has been identified as a protein that associated with the p50 subunit of NF-kappaB in a yeast two-hybrid screen. Similar to previously known I kappaB proteins, this member, I kappaB epsilon, has six consecutive ankyrin repeats. I kappaB epsilon mRNA is widely expressed in different human tissues, with highest levels in spleen, testis, and lung. I kappaB epsilon interacts with different NF-kappaB proteins, including p65 (RelA), c-Rel, p50, and p52, in vitro and in vivo and inhibits the DNA-binding activity of both p50-p65 and p50-c-Rel complexes effectively. Endogenous and transfected NF-kappaB (RelA-dependent) transcriptional activation is inhibited by I kappaB epsilon. I kappaB epsilon mRNA is expressed at different levels in specific cell types and is synthesized constitutively in transformed B-cell lines. It also displays differential induction in response to tumor necrosis factor alpha, interleukin-1, or phorbol ester stimulation compared to I kappaB alpha in non-B-cell lines. Therefore, I kappaB epsilon represents a novel I kappaB family member which provides an alternative mechanism for regulation of NF-kappaB-dependent transcription.

1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265 ◽  
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


2007 ◽  
Vol 51 (5) ◽  
pp. 843-851 ◽  
Author(s):  
Hiroyuki Namba ◽  
Vladimir Saenko ◽  
Shunichi Yamashita

Apoptosis is an essential physiological process of elimination of destined cells during the development and differentiation or after damage from external stresses such as ionizing radiation or chemotherapeutic agents. Disruption of apoptosis is proved to cause various diseases including cancer. Among numerous molecules involved in diverse anti- or pro-apoptotic signaling pathways, NF-kappaB is one of the key factors controlling anti-apoptotic responses. Its anti-apoptotic effect is thought to be mediated through not only transcriptional activation of dependent genes but also by crosstalking with the JNK pathway. Oncogenic proteins such as Ret/PTC, Ras and BRAF can induce NF-kappaB activation making it an important change in thyroid cancer. A number of specific or non-specific NF-kappaB inhibitors have been tried to take over the cascade in in vitro and in vivo experiments. These agents can induce massive apoptosis especially in combination with radio- or chemotherapy. Current results suggest that the inhibition of the NF-kappaB may be a promising strategy for advanced thyroid cancer treatment but further investigations are warranted to develop specific and clinically effective NF-kappaB inhibitors in future.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2522-2522 ◽  
Author(s):  
Nishitha Reddy ◽  
Raymond Cruz ◽  
Francisco Hernandez-Ilizaliturri ◽  
Joy Knight ◽  
Myron S. Czuczman

Abstract Background: Lenalidomide is a potent thalidomide analogue shown to activate both the innate and adoptive immune system, inhibit angiogenesis, and modify the tumor microenvironment. While lenalidomide has received approval by the U.S. Federal Drug Administration (FDA) for the treatment of various hematological conditions, ongoing clinical trials are addressing its role in the treatment of B-cell lymphomas. There is a dire need to develop novel well-tolerated, therapies which combine various target-specific agents such as lenalidomide and monoclonal antibodies (mAbs). We previously demonstrated that lenalidomide is capable of expanding natural killer (NK) cells in a human-lymphoma-bearing SCID mouse model and improve rituximab anti-tumor activity in vivo. Methods: In our current work we studied the effects of lenalidomide on the biological activity of a panel of mAbs against various B-cell lymphomas, utilizing various rituximab-sensitive (RSCL) and rituximab-resistant cell lines (RRCL) generated in our laboratory from Raji and RL cell lines. Functional assays including antibody-dependant cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CMC) were performed to demonstrate changes in sensitivity to rituximab. RSCL and RRCL (1′105 cells/well) were exposed to either lenalidomide (5 μg/ml) or vehicle with or without mAb at a final concentration of 10μg/ml. The mAb panel consisted of two anti-CD20 mAbs: rituximab (Biogen IDEC, Inc.) and hA20, a humanized anti-CD20 mAb (Immunomedics, Inc.); an anti-CD80 mAb (galixumab, Biogen IDEC Inc.), and an anti-CD52 antibody (Alemtuzumab, Berlex Inc.). Changes in DNA synthesis and cell proliferation were determined at 24 and 48 hrs by [3H]-thymidine uptake. For ADCC/CMC studies, NHL cells were exposed to lenalidomide or vehicle for 24 hrs and then labeled with 51Cr prior to treatment with one of various mAbs (10 mg/ml) and peripheral blood mononuclear cells (Effector: Target ratio, 40:1) or human serum, respectively. 51Cr-release was measured and the percentage of lysis was calculated. Changes in antigen (CD20, CD80, and CD52) expression following in vitro exposure to lenalidomide were studied by multicolor flow cytometric analysis. Results: Concomitant in vitro exposure of various RSCL and RRCL cells to lenalidomide and either galixumab, hA20 or alemtuzumab for 24 hrs resulted in improved anti-tumor activity when compared to controls. In addition, pre-incubation of both RSCL and RRCL with lenalidomide rendered cells more susceptible to alemtuzumab-, hA20- and galixumab-mediated ADCC and CMC. No antigen modulation (i.e., upregulation) was observed following in vitro exposure of lenalidomide to NHL cell lines, suggesting an alternative mechanism involved in the improvement antitumor activity observed. Conclusions: Our data suggest that the augmented antitumor effect of lenalidomide is not limited to its combination with rituximab, but also that it augments the antiproliferative and biological activity of alemtuzumab, hA20 and galixumab. Furthermore, these interactions are observed even in our RRCL. Future studies will be directed towards evaluating whether similar activity will be seen in vivo using a human lymphoma-bearing SCID mouse model. (Supported by USPHS grant PO1-CA103985 from the National Cancer Institute.)


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2417-2417
Author(s):  
Olga Ritz ◽  
Jochen K Lennerz ◽  
Karolin Rommel ◽  
Karola Dorsch ◽  
Elena Kelsch ◽  
...  

Abstract Abstract 2417 Primary mediastinal B-cell lymphoma (PMBL) is a subtype of diffuse large B-cell lymphoma (DLBCL) that affects predominantly young women (Swerdlow et al. 2008). Despite improvements due to addition of rituximab, which has become state of the art treatment, 20% of PMBL patients succumb to disease progression or relapse. Notably, here are currently no registered trials that are actively recruiting PMBL-patients and a better understanding of the underlying pathobiology may identify novel therapeutic targets and provide an alternative to dose escalation (Steidl and Gascoyne 2011). BCL6 is a key germinal center B-cell transcription factor that suppresses genes involved in lymphocyte activation, differentiation, cell cycle arrest and DNA damage response gene. BCL6 is aberrantly expressed in certain DLBCL subgroups and BCL6 overexpression is sufficient for lymphomagenesis in mice (Cattoretti et al. 2005). In cellular- and murine DLBCL models, targeting of BCL6 via retroinverted BCL6 peptid inhibitor (RI-BPI) appears effective (Polo et al. 2004; Cerchietti et al. 2010). In conjunction with the relatively restricted expression pattern of BCL6, these data collectively suggest BCL6 as a candidate for targeted therapy in BCL6-positive lymphomas. Despite substantial work on BCL6 in lymphomas, the function of BCL6 in PMBL is unknown. To address the BCL6 function in PMBL, we performed BCL6 depletion by siRNA in all three available PMBL cell lines: K1106, U-2940 and MedB-1. We found that BCL6 acts pro-proliferative and anti-apoptotic; however, PMBL models were only partially dependent on and not addicted to BCL6. Given that BCL6 expression in all PMBL cell lines is variable with a notable fraction of BCL6-negative cells, we argued that increasing the fraction of BCL6-positive cells might increase the level of BCL6-dependence. Since IL-4/STAT6 signaling upregulates BCL6 in mouse lymphocytes (Schroder et al. 2002), we treated PMBL cell lines with IL-4 (or IL-13) and, as expected, observed increased phosphorylated (p)STAT6 levels. Surprisingly, the pSTAT6 increase was not associated with higher – but with drastically lower BCL6 protein levels. Moreover, in untreated cells, co-localization studies for pSTAT6- and BCL6 demonstrated staining in mutually exclusive subsets of cells (Figure 1A), suggesting negative interaction between BCL6 and pSTAT6. Other STAT family members were already shown to participate in the transcriptional regulation of BCL6. Thus, we examined binding of STAT6 to the proximal promoter of BCL6 in all PMBL cell lines using shift assay and chromatin immunoprecipitation. We found that STAT6 can bind all five GAS binding sites within the BCL6 promoter in vitro and in all PMBL cell lines STAT6 was bound to proximal BCL6 promoter in vivo. Furthermore, transient STAT6 depletion by siRNA and/or ectopic expression of constitutively active STAT6 confirms that pSTAT6 is sufficient for transcriptional repression of BCL6. Co-localization studies in primary patient samples demonstrated mutually exclusive BCL6/pSTAT6 distribution as a visual hallmark of the repression mechanism (Figure 1B, C). Thus, our data demonstrate for the first time that constitutively active STAT6 transcriptionally represses BCL6 in PMBL. In conjunction with functional data, the delineated repression mechanism may prevent addiction to one single oncogenic pathway (i.e. BCL6) in PMBL. Figure 1. Mutually exclusive distribution of BCL6 and pSTAT6 in PMBL Figure 1. Mutually exclusive distribution of BCL6 and pSTAT6 in PMBL Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2728-2728
Author(s):  
Alexander JA Deutsch ◽  
Beate Rinner ◽  
Martin Pichler ◽  
Karoline Fechter ◽  
Hildegard T. Greinix ◽  
...  

Abstract The nuclear orphan receptors NR4A1 and NR4A3 have been demonstrated as cooperating tumour suppressor genes leading to rapid development of acute myeloid leukaemia (AML) in double knock-out mice. In humans, their expression is reduced in leukemic blasts in AML patients. Furthermore, NR4A1 and NR4A3 hypoallelic mice develop preleukemic myelodysplastic/myeloproliferative disorders with progression to AML in some cases. Recently we published a comprehensive study of NR4A nuclear receptor expression levels in lymphoid neoplasms that revealed a marked reduction of NR4A1 and NR4A3 in the majority of patients with B-cell chronic lymphocytic leukaemia, with follicular lymphoma, and with diffuse large B cell lymphoma. Interestingly, functional characterization demonstrated that NR4A1 induces apoptosis of aggressive lymphoma cells in vitro and suppresses tumour growth in a xenograft mouse model. Since the role of NR4A3 in aggressive lymphomas is unknown, we aimed to investigate its etiopathogenic function in these tumors. Low expression of NR4A3 was associated with poor survival in aggressive lymphoma patients. Experimentally, induction of NR4A3 expression by inducible ectopic expression in a variety of lymphoma cell lines led to a significantly higher proportion of apoptotic cells as demonstrated by DNA cleavage, Annexin V staining and increased caspase 3/7 activity. To test the tumor suppressor functions of NR4A3 in vivo, the stably transduced SuDHL4-lymphoma cell line was xenografted in the NOD-SCID-gamma (NSG) mouse model. In this system NR4A3 expression abrogated tumor growth in the NSG mice, whereas vector control and uninduced cells formed massive lymphoid tumors. Pharmacological activation of NR4A3 by Thapsigargin and BF175 resulted in a NR4A3 dependent induction of apoptosis in vitro. To dissect differential transcriptional activity of NR4A3 and NR4A1,both factors were separately over-expressed in four different aggressive lymphoma cell lines followed by semi-quantitative mRNA expression analysis of intrinsic and extrinsic apoptotic genes. NR4A1 or NR4A3 over-expression caused apoptosis by induction of BAK, Puma, BIK, BIM, BID and Trail to the same degree. In summary, our data suggest that NR4A3 possesses tumor suppressive function in aggressive lymphomas by pro-apoptotic transactivation and that NR4A3 is functional redundant to NR4A1 in aggressive lymphomas. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3017-3017
Author(s):  
Chiara Tarantelli ◽  
Eugenio Gaudio ◽  
Petra Hillmann ◽  
Filippo Spriano ◽  
Ivo Kwee ◽  
...  

Abstract Background. The PI3K/AKT/mTOR pathway is an important therapeutic target in lymphomas. PQR309 is a dual PI3K/mTOR inhibitor that has shown in vitroanti-lymphoma activity (Tarantelli et al, ASH2015) and is in phase 2 trial (NCT02249429, , NCT02723877, NCT02669511). PQR620 is a novel mTORC1/2 inhibitor that has shown preclinical activity in solid tumor models (Beaufils et al, AACR 2016). Here, we present the in vitro and in vivo anti-lymphoma activity of PQR620 as single agent and also the in vivo results of PQR620 or PQR309 containing combinations with the BCL2 inhibitor venetoclax. Materials and Methods. The drug concentration causing 50% inhibition of cell proliferation (IC50) was obtained in lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), no.=26; mantle cell lymphoma (MCL), no.=8; anaplastic large T-cell lymphoma, no.=5; others, no=5] exposed to increasing doses of PQR620 for 72h using a Tecan D300e Digital Dispenser on 384well plates. For in vivo experiments, NOD-Scid (NOD.CB17-Prkdcscid/J) mice were subcutaneously inoculated with 10 x106 (RIVA) or with 5 x106(SU-DHL-6) cells. Results. PQR620 had a median IC50 of 250 nM (95%CI, 200-269 nM) when tested on 44 lymphoma cell lines. Activity was higher in B cell (no.=36) than in T cell tumors (no.=8) (median IC50s: 250 nM vs 450 nM; P=0.002). At 72h, anti-tumor activityof PQR620 was mostly cytostatic and apoptosis induction was seen only in 6/44 cell lines (13%), Sensitivity to PQR620 or apoptosis induction did not differ between DLBCL and MCL, and they were not affected by the DLBCL cell of origin, by TP53 status or by the presence of MYC or BCL2 translocations. The activity of PQR620 as single agent underwent in vivo evaluation in two DLBCL models, the germinal center B cell type DLBCL (GCB-DLBCL) SU-DHL-6 and the acivated B cell-like DLBCL (ABC-DLBCL) RIVA. Treatments with PQR620 (100mg/kg dose per day, Qdx7/w) started with 100-150 mm3 tumors and were carried for 14 (SU-DHL-6) or 21 days (RIVA). In both models, PQR620 determined a 2-fold decrease of the tumor volumes in comparison with control, with significant differences in both SU-DHL-6 (D7, D9, D11, D14; P < 0.005) and RIVA (D14, D16, D19, D21; P < 0.005). Based on the previously reported synergy between the dual PI3K/mTOR inhibitor PQR309 and venetoclax (Tarantelli et al, ASH 2015), we evaluated the combination of the PQR620 or PQR309 with the BCL2 inhibitor venetoclax (100 mg/kg, Qdx7/w) in the SU-DHL-6 model. Both the venetoclax combination with the dual PI3K/mTOR inhibitor and the venetoclax combination with mTORC1/2 inhibitor were superior to the compounds given as single agents, leading to the eradication of the xenografts. The combination of PQR620 with venetoclax showed highly significant differences either versus control or single agents during all days of the experiment (D4, D7, D9, D11, D14; P < 0.001). Similarly, the combination of PQR309 with venetoclax showed highly significant differences versus venetoclax (D7, D9, D11, D14; P < 0.001) and PQR309 (D7, D9, D11; P < 0.005) alone. Conclusions. The novel mTORC1/2 inhibitor PQR620 had in vitro and in vivo anti-lymphoma activity as single agent. In vivo experiments showed that both PQR620 and the dual PI3K/mTOR inhibitor PQR309 can strongly benefit from the combination with the BCL2 inhibitor venetoclax. Disclosures Hillmann: PIQUR Therapeutics AG: Employment. Fabbro:PIQUR Therapeutics AG: Employment. Cmiljanovic:PIQUR Therapeutics AG: Employment, Membership on an entity's Board of Directors or advisory committees.


2016 ◽  
Vol 5 (3) ◽  
pp. 836-847 ◽  
Author(s):  
Crystal S. Lewis ◽  
Luisa Torres ◽  
Jeremy T. Miyauchi ◽  
Cyrus Rastegar ◽  
Jonathan M. Patete ◽  
...  

Abstract Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of N-Rhomb exposure in the presence of microglia, we have synthesized Rhodamine B (RhB)-labeled α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB-labeled α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure stimulate the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 μg mL−1 after 48 hours of incubation, the in vitro and in vivo internalization of RhB-labeled α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.


Sign in / Sign up

Export Citation Format

Share Document